Skip to main content

Advertisement

Log in

Presence of endothelial colony-forming cells is associated with reduced microvascular obstruction limiting infarct size and left ventricular remodelling in patients with acute myocardial infarction

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Endothelial colony-forming cells (ECFCs) are known to increase after acute myocardial infarction (AMI). We examined whether the presence of ECFCs is associated with preserved microvascular integrity in the myocardium at risk by reducing microvascular obstruction (MVO). We enrolled 88 patients with a first ST elevation AMI. ECFC colonies and circulating progenitor cells were characterized at admission. MVO was evaluated at 5 days and infarct size at 5 days and at 6-month follow-up by magnetic resonance imaging. ECFC colonies were detected in 40 patients (ECFCpos patients). At 5 days, MVO was of greater magnitude in ECFCneg versus ECFCpos patients (7.7 ± 5.3 vs. 3.2 ± 5%, p = 0.0002). At 6 months, in ECFCpos patients, there was a greater reduction in infarct size (−32.4 ± 33 vs. −12.8 ± 24%; p = 0.003) and a significant improvement in left ventricular (LV) volumes and ejection fraction. Level of circulating CD34+/VEGF-R2+ cells was correlated with the number of ECFC colonies (r = 0.54, p < 0.001) and relative change in infarct size (r = 0.71, p < 0.0001). The results showed that the presence of ECFC colonies is associated with reduced MVO after AMI, leading to reduced infarct size and less LV remodelling and can be considered a marker of preserved microvascular integrity in AMI patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abbott JD, Huang Y, Liu D, Hickey R, Krause DS, Giordano FJ (2004) Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 110:3300–3305

    Article  PubMed  Google Scholar 

  2. Ahrens I, Domeij H, Eisenhardt S, Topcic D, Albrecht M, Leitner E, Viitaniemi K, Jowett J, Lappas M, Bode C, Haviv I, Peter K (2011) Opposing effects of monomeric and pentameric C-reactive protein on endothelial progenitor cells. Basic Res Cardiol 106:879–895. doi:10.1007/s00395-011-0191-y

    Article  PubMed  CAS  Google Scholar 

  3. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  PubMed  CAS  Google Scholar 

  4. Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M, Rovner A, Ellis SG, Thomas JD, DiCorleto PE, Topol EJ, Penn MS (2003) Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362:697–703. doi:10.1016/S0140-6736(03)14232-8

    Article  PubMed  CAS  Google Scholar 

  5. Bassand JP, Hamm C (2007) New European guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction—what are the new and key messages. Pol Arch Med Wewn 117:391–393

    PubMed  Google Scholar 

  6. Bolognese L, Carrabba N, Parodi G, Santoro GM, Buonamici P, Cerisano G, Antoniucci D (2004) Impact of microvascular dysfunction on left ventricular remodeling and long-term clinical outcome after primary coronary angioplasty for acute myocardial infarction. Circulation 109:1121–1126. doi:10.1161/01.CIR.0000118496.44135.A7

    Article  PubMed  Google Scholar 

  7. Bondarenko O, Beek AM, Hofman MB, Kuhl HP, Twisk JW, van Dockum WG, Visser CA, van Rossum AC (2005) Standardizing the definition of hyperenhancement in the quantitative assessment of infarct size and myocardial viability using delayed contrast-enhanced CMR. J Cardiovasc Magn Reson 7:481–485

    Article  PubMed  Google Scholar 

  8. Breuckmann F, Nassenstein K, Bucher C, Konietzka I, Kaiser G, Konorza T, Naber C, Skyschally A, Gres P, Heusch G, Erbel R, Barkhausen J (2009) Systematic analysis of functional and structural changes after coronary microembolization: a cardiac magnetic resonance imaging study. JACC Cardiovasc Imaging 2:121–130. doi:10.1016/j.jcmg.2008.10.011

    Article  PubMed  Google Scholar 

  9. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542

    Article  PubMed  Google Scholar 

  10. Cesari F, Caporale R, Marcucci R, Caciolli S, Stefano PL, Capalbo A, Macchi C, Vannucci M, Gensini GF, Abbate R, Gori AM (2008) NT-proBNP and the anti-inflammatory cytokines are correlated with endothelial progenitor cells’ response to cardiac surgery. Atherosclerosis 199:138–146

    Article  PubMed  CAS  Google Scholar 

  11. Cochet AA, Lorgis L, Lalande A, Zeller M, Beer JC, Walker PM, Touzery C, Wolf JE, Brunotte F, Cottin Y (2009) Major prognostic impact of persistent microvascular obstruction as assessed by contrast-enhanced cardiac magnetic resonance in reperfused acute myocardial infarction. Eur Radiol 19:2117–2126. doi:10.1007/s00330-009-1395-5

    Article  PubMed  Google Scholar 

  12. Comte A, Lalande A, Walker PM, Cochet A, Legrand L, Cottin Y, Wolf JE, Brunotte F (2004) Visual estimation of the global myocardial extent of hyperenhancement on delayed contrast-enhanced MRI. Eur Radiol 14:2182–2187

    Article  PubMed  Google Scholar 

  13. Davani S, Gozalo C, Gambert S, Chalmers D, Gambert P, Schiele F, Kantelip JP, Meneveau N (2010) The polymorphism Trp719Arg in the kinesin-like protein 6 is associated with the presence of late outgrowth endothelial progenitor cells in acute myocardial infarction. Atherosclerosis 210:48–50. doi:10.1016/j.atherosclerosis.2009.11.041

    Article  PubMed  CAS  Google Scholar 

  14. De Luca G, van’t Hof AW, de Boer MJ, Ottervanger JP, Hoorntje JC, Gosselink AT, Dambrink JH, Zijlstra F, Suryapranata H (2004) Time-to-treatment significantly affects the extent of ST-segment resolution and myocardial blush in patients with acute myocardial infarction treated by primary angioplasty. Eur Heart J 25:1009–1013

    Article  PubMed  Google Scholar 

  15. Deschaseaux F, Selmani Z, Falcoz PE, Mersin N, Meneveau N, Penfornis A, Kleinclauss C, Chocron S, Etievent JP, Tiberghien P, Kantelip JP, Davani S (2007) Two types of circulating endothelial progenitor cells in patients receiving long term therapy by HMG-CoA reductase inhibitors. Eur J Pharmacol 562:111–118

    Article  PubMed  CAS  Google Scholar 

  16. Friedrich EB, Werner C, Walenta K, Bohm M, Scheller B (2009) Role of extracellular signal-regulated kinase for endothelial progenitor cell dysfunction in coronary artery disease. Basic Res Cardiol 104:613–620. doi:10.1007/s00395-009-0022-6

    Article  PubMed  CAS  Google Scholar 

  17. Gaspardone A, Menghini F, Mazzuca V, Skossyreva O, Barbato G, de Fabritiis P (2006) Progenitor cell mobilisation in patients with acute and chronic coronary artery disease. Heart 92:253–254

    Article  PubMed  CAS  Google Scholar 

  18. Gerber BL, Rochitte CE, Melin JA, McVeigh ER, Bluemke DA, Wu KC, Becker LC, Lima JA (2000) Microvascular obstruction and left ventricular remodeling early after acute myocardial infarction. Circulation 101:2734–2741

    PubMed  CAS  Google Scholar 

  19. Grothues F, Smith GC, Moon JC, Bellenger NG, Collins P, Klein HU, Pennell DJ (2002) Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol 90:29–34

    Article  PubMed  Google Scholar 

  20. Grundmann F, Scheid C, Braun D, Zobel C, Reuter H, Schwinger RH, Muller-Ehmsen J (2007) Differential increase of CD34, KDR/CD34, CD133/CD34 and CD117/CD34 positive cells in peripheral blood of patients with acute myocardial infarction. Clin Res Cardiol 96:621–627. doi:10.1007/s00392-007-0543-7

    Article  PubMed  CAS  Google Scholar 

  21. Gulati R, Jevremovic D, Peterson TE, Chatterjee S, Shah V, Vile RG, Simari RD (2003) Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circ Res 93:1023–1025

    Article  PubMed  CAS  Google Scholar 

  22. Heusch G, Kleinbongard P, Bose D, Levkau B, Haude M, Schulz R, Erbel R (2009) Coronary microembolization: from bedside to bench and back to bedside. Circulation 120:1822–1836. doi:10.1161/CIRCULATIONAHA.109.888784

    Article  PubMed  Google Scholar 

  23. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600

    Article  PubMed  Google Scholar 

  24. Hirschi KK, Ingram DA, Yoder MC (2008) Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol 28:1584–1595

    Article  PubMed  CAS  Google Scholar 

  25. Hur J, Yoon CH, Kim HS, Choi JH, Kang HJ, Hwang KK, Oh BH, Lee MM, Park YB (2004) Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 24:288–293

    Article  PubMed  CAS  Google Scholar 

  26. Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Pollok K, Ferkowicz MJ, Gilley D, Yoder MC (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760

    Article  PubMed  CAS  Google Scholar 

  27. Isner JM, Asahara T (1999) Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest 103:1231–1236

    Article  PubMed  CAS  Google Scholar 

  28. Kaur S, Kumar T, Uruno A, Sugawara A, Jayakumar K, Kartha C (2009) Genetic engineering with endothelial nitric oxide synthase improves functional properties of endothelial progenitor cells from patients with coronary artery disease: an in vitro study. Basic Res Cardiol 104:739–749. doi:10.1007/s00395-009-0039-x

    Article  PubMed  Google Scholar 

  29. Laterveer L, Lindley IJ, Heemskerk DP, Camps JA, Pauwels EK, Willemze R, Fibbe WE (1996) Rapid mobilization of hematopoietic progenitor cells in rhesus monkeys by a single intravenous injection of interleukin-8. Blood 87:781–788

    PubMed  CAS  Google Scholar 

  30. Leone AM, Rutella S, Bonanno G, Abbate A, Rebuzzi AG, Giovannini S, Lombardi M, Galiuto L, Liuzzo G, Andreotti F, Lanza GA, Contemi AM, Leone G, Crea F (2005) Mobilization of bone marrow-derived stem cells after myocardial infarction and left ventricular function. Eur Heart J 26:1196–1204. doi:10.1093/eurheartj/ehi164

    Article  PubMed  Google Scholar 

  31. Leone AM, Valgimigli M, Giannico MB, Zaccone V, Perfetti M, D’ Amario D, Rebuzzi AG, Crea F (2009) From bone marrow to the arterial wall: the ongoing tale of endothelial progenitor cells. Eur Heart J 30:890–899

    Article  PubMed  Google Scholar 

  32. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP (2000) Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 105:71–77

    Article  PubMed  CAS  Google Scholar 

  33. Ma J, Ge J, Zhang S, Sun A, Shen J, Chen L, Wang K, Zou Y (2005) Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction. Basic Res Cardiol 100:217–223. doi:10.1007/s00395-005-0521-z

    Article  PubMed  CAS  Google Scholar 

  34. Massa M, Campanelli R, Bonetti E, Ferrario M, Marinoni B, Rosti V (2009) Rapid and large increase of the frequency of circulating endothelial colony-forming cells (ECFCs) generating late outgrowth endothelial cells in patients with acute myocardial infarction. Exp Hematol 37:8–9. doi:10.1016/j.exphem.2008.09.007

    Article  PubMed  CAS  Google Scholar 

  35. Massa M, Rosti V, Ferrario M, Campanelli R, Ramajoli I, Rosso R, De Ferrari GM, Ferlini M, Goffredo L, Bertoletti A, Klersy C, Pecci A, Moratti R, Tavazzi L (2005) Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction. Blood 105:199–206

    Article  PubMed  CAS  Google Scholar 

  36. Nijveldt R, Beek AM, Hirsch A, Stoel MG, Hofman MBM, Umans VAWM, Algra PR, Twisk JWR, van Rossum AC (2008) Functional recovery after acute myocardial infarction: comparison between angiography, electrocardiography, and cardiovascular magnetic resonance measures of microvascular injury. J Am Coll Cardiol 52:181–189

    Article  PubMed  Google Scholar 

  37. Nijveldt R, Hofman MBM, Hirsch A, Beek AM, Umans VAWM, Algra PR, Piek JJ, van Rossum AC (2009) Assessment of microvascular obstruction and prediction of short-term remodeling after acute myocardial infarction: cardiac MR imaging study 1. Radiology 250:363–370. doi:10.1148/radiol.2502080739

    Article  PubMed  Google Scholar 

  38. Numaguchi Y, Sone T, Okumura K, Ishii M, Morita Y, Kubota R, Yokouchi K, Imai H, Harada M, Osanai H, Kondo T, Murohara T (2006) The impact of the capability of circulating progenitor cell to differentiate on myocardial salvage in patients with primary acute myocardial infarction. Circulation 114:I114–I119. doi:10.1161/CIRCULATIONAHA.105.000588

    Article  PubMed  Google Scholar 

  39. Ørn S, Manhenke C, Greve OJ, Larsen AI, Bonarjee VVS, Edvardsen T, Dickstein K (2009) Microvascular obstruction is a major determinant of infarct healing and subsequent left ventricular remodelling following primary percutaneous coronary intervention. Eur Heart J 30:1978–1985. doi:10.1093/eurheartj/ehp219

    Article  PubMed  Google Scholar 

  40. Roberts N, Xiao Q, Weir G, Xu Q, Jahangiri M (2007) Endothelial progenitor cells are mobilized after cardiac surgery. Ann Thorac Surg 83:598–605

    Article  PubMed  Google Scholar 

  41. Rochitte CE, Lima JAC, Bluemke DA, Reeder SB, McVeigh ER, Furuta T, Becker LC, Melin JA (1998) Magnitude and time course of microvascular obstruction and tissue injury after acute myocardial infarction. Circulation 98:1006–1014

    PubMed  CAS  Google Scholar 

  42. Sandstedt J, Jonsson M, Lindahl A, Jeppsson A, Asp J (2010) C-kit+ CD45− cells found in the adult human heart represent a population of endothelial progenitor cells. Basic Res Cardiol 105:545–556. doi:10.1007/s00395-010-0088-1

    Article  PubMed  Google Scholar 

  43. Schomig K, Busch G, Steppich B, Sepp D, Kaufmann J, Stein A, Schomig A, Ott I (2006) Interleukin-8 is associated with circulating CD133+ progenitor cells in acute myocardial infarction. Eur Heart J 27:1032–1037

    Article  PubMed  Google Scholar 

  44. Seeger F, Sedding D, Langheinrich A, Haendeler J, Zeiher A, Dimmeler S (2010) Inhibition of the p38 MAP kinase in vivo improves number and functional activity of vasculogenic cells and reduces atherosclerotic disease progression. Basic Res Cardiol 105:389–397. doi:10.1007/s00395-009-0072-9

    Article  PubMed  CAS  Google Scholar 

  45. Shintani S, Murohara T, Ikeda H, Ueno T, Honma T, Katoh A, Sasaki K, Shimada T, Oike Y, Imaizumi T (2001) Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 103:2776–2779

    Article  PubMed  CAS  Google Scholar 

  46. Sieveking DP, Buckle A, Celermajer DS, Ng MK (2008) Strikingly different angiogenic properties of endothelial progenitor cell subpopulations: insights from a novel human angiogenesis assay. J Am Coll Cardiol 51:660–668. doi:10.1016/j.jacc.2007.09.059

    Article  PubMed  CAS  Google Scholar 

  47. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438

    Article  PubMed  CAS  Google Scholar 

  48. Thiele H, Nagel E, Paetsch I, Schnackenburg B, Bornstedt A, Kouwenhoven M, Wahl A, Schuler G, Fleck E (2001) Functional cardiac MR imaging with steady-state free precession (SSFP) significantly improves endocardial border delineation without contrast agents. J Magn Reson Imaging 14:362–367. doi:10.1002/jmri

    Article  PubMed  CAS  Google Scholar 

  49. Thygesen K, Alpert JS, White HD, Jaffe AS, Apple FS, Galvani M, Katus HA, Newby LK, Ravkilde J, Chaitman B, Clemmensen PM, Dellborg M, Hod H, Porela P, Underwood R, Bax JJ, Beller GA, Bonow R, Van der Wall EE, Bassand JP, Wijns W, Ferguson TB, Steg PG, Uretsky BF, Williams DO, Armstrong PW, Antman EM, Fox KA, Hamm CW, Ohman EM, Simoons ML, Poole-Wilson PA, Gurfinkel EP, Lopez-Sendon JL, Pais P, Mendis S, Zhu JR, Wallentin LC, Fernandez-Aviles F, Fox KM, Parkhomenko AN, Priori SG, Tendera M, Voipio-Pulkki LM, Vahanian A, Camm AJ, De Caterina R, Dean V, Dickstein K, Filippatos G, Funck-Brentano C, Hellemans I, Kristensen SD, McGregor K, Sechtem U, Silber S, Tendera M, Widimsky P, Zamorano JL, Morais J, Brener S, Harrington R, Morrow D, Lim M, Martinez-Rios MA, Steinhubl S, Levine GN, Gibler WB, Goff D, Tubaro M, Dudek D, Al-Attar N (2007) Universal definition of myocardial infarction. Circulation 116:2634–2653

    Article  PubMed  Google Scholar 

  50. Urbich C, Aicher A, Heeschen C, Dernbach E, Hofmann WK, Zeiher AM, Dimmeler S (2005) Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol 39:733–742

    Article  PubMed  CAS  Google Scholar 

  51. Urbich C, Dimmeler S (2004) Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95:343–353. doi:10.1161/01.RES.0000137877.89448.78

    Article  PubMed  CAS  Google Scholar 

  52. Van Craenenbroeck E, Hoymans V, Beckers P, Possemiers N, Wuyts K, Paelinck B, Vrints C, Conraads V (2010) Exercise training improves function of circulating angiogenic cells in patients with chronic heart failure. Basic Res Cardiol 105:665–676. doi:10.1007/s00395-010-0105-4

    Article  PubMed  Google Scholar 

  53. Van de Werf F, Bax J, Betriu A, Blomstrom-Lundqvist C, Crea F, Falk V, Filippatos G, Fox K, Huber K, Kastrati A, Rosengren A, Steg PG, Tubaro M, Verheugt F, Weidinger F, Weis M, Vahanian A, Camm J, De Caterina R, Dean V, Dickstein K, Filippatos G, Funck-Brentano C, Hellemans I, Kristensen SD, McGregor K, Sechtem U, Silber S, Tendera M, Widimsky P, Zamorano JL, Silber S, Aguirre FV, Al-Attar N, Alegria E, Andreotti F, Benzer W, Breithardt O, Danchin N, Di Mario C, Dudek D, Gulba D, Halvorsen S, Kaufmann P, Kornowski R, Lip GY, Rutten F (2008) Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation: the Task Force on the Management of ST-Segment Elevation Acute Myocardial Infarction of the European Society of Cardiology. Eur Heart J 29:2909–2945

    Article  PubMed  Google Scholar 

  54. Voo S, Eggermann J, Dunaeva M, Ramakers-van Oosterhoud C, Waltenberger J (2008) Enhanced functional response of CD133+ circulating progenitor cells in patients early after acute myocardial infarction. Eur Heart J 29:241–250

    Article  PubMed  Google Scholar 

  55. Walenta KL, Bettink S, Bohm M, Friedrich EB (2011) Differential chemokine receptor expression regulates functional specialization of endothelial progenitor cell subpopulations. Basic Res Cardiol 106:299–305. doi:10.1007/s00395-010-0142-z

    Article  PubMed  CAS  Google Scholar 

  56. Wang Y, Haider H, Ahmad N, Zhang D, Ashraf M (2006) Evidence for ischemia induced host-derived bone marrow cell mobilization into cardiac allografts. J Mol Cell Cardiol 41:478–487. doi:10.1016/j.yjmcc.2006.06.074

    Article  PubMed  CAS  Google Scholar 

  57. Werner N, Wassmann S, Ahlers P, Schiegl T, Kosiol S, Link A, Walenta K, Nickenig G (2007) Endothelial progenitor cells correlate with endothelial function in patients with coronary artery disease. Basic Res Cardiol 102:565–571. doi:10.1007/s00395-007-0680-1

    Article  PubMed  Google Scholar 

  58. Wojakowski W, Kucia M, Kazmierski M, Ratajczak MZ, Tendera M (2008) Circulating progenitor cells in stable coronary heart disease and acute coronary syndromes: relevant reparatory mechanism? Heart 94:27–33

    Article  PubMed  CAS  Google Scholar 

  59. Xiao Q, Ye S, Oberhollenzer F, Mayr A, Jahangiri M, Willeit J, Kiechl S, Xu Q (2008) SDF1 gene variation is associated with circulating SDF1alpha level and endothelial progenitor cell number: the Bruneck Study. PLoS ONE 3:e4061. doi:10.1371/journal.pone.0004061

    Article  PubMed  Google Scholar 

  60. Yamaguchi J, Kusano KF, Masuo O, Kawamoto A, Silver M, Murasawa S, Bosch-Marce M, Masuda H, Losordo DW, Isner JM, Asahara T (2003) Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 107:1322–1328

    Article  PubMed  CAS  Google Scholar 

  61. Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809. doi:10.1182/blood-2006-08-043471

    Article  PubMed  CAS  Google Scholar 

  62. Yoon CH, Hur J, Park KW, Kim JH, Lee CS, Oh IY, Kim TY, Cho HJ, Kang HJ, Chae IH, Yang HK, Oh BH, Park YB, Kim HS (2005) Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation 112:1618–1627. doi:10.1161/CIRCULATIONAHA.104.503433

    Article  PubMed  Google Scholar 

  63. Yu Y, Gao Y, Qin J, Kuang C-Y, Song M-B, Yu S-Y, Cui B, Chen J-F, Huang L (2010) CCN1 promotes the differentiation of endothelial progenitor cells and reendothelialization in the early phase after vascular injury. Basic Res Cardiol 105:713–724. doi:10.1007/s00395-010-0117-0

    Article  PubMed  CAS  Google Scholar 

  64. Zernecke A, Weber C (2005) Inflammatory mediators in atherosclerotic vascular disease. Basic Res Cardiol 100:93–101. doi:10.1007/s00395-005-0511-6

    Article  PubMed  CAS  Google Scholar 

  65. Zhang Y, Ingram DA, Murphy MP, Saadatzadeh MR, Mead LE, Prater DN, Rehman J (2009) Release of proinflammatory mediators and expression of proinflammatory adhesion molecules by endothelial progenitor cells. Am J Physiol Heart Circ Physiol 296:H1675–H1682. doi:10.1152/ajpheart.00665.2008

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was financed by the French National Programme for Hospital Research (Programme hospitalier de rechercheclinique, PHRC), a state-sponsored programme for funding research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Meneveau.

Additional information

N. Meneveau and F. Deschaseaux contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meneveau, N., Deschaseaux, F., Séronde, MF. et al. Presence of endothelial colony-forming cells is associated with reduced microvascular obstruction limiting infarct size and left ventricular remodelling in patients with acute myocardial infarction. Basic Res Cardiol 106, 1397–1410 (2011). https://doi.org/10.1007/s00395-011-0220-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-011-0220-x

Keywords

Navigation