Skip to main content

Advertisement

Log in

6-Shogaol from ginger shows anti-tumor effect in cervical carcinoma via PI3K/Akt/mTOR pathway

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

6-Shogaol, an active phenolic compound from ginger (Zingiber officinale), can inhibit the growth of a variety of human cancer cells. Nevertheless, its underlying molecular mechanisms in cervical cancer remain unclear. In this study, we systematically examine the inhibitory effect of 6-shogaol on cervical cancer in vitro and in vivo.

Methods

Cell proliferation was assessed by CCK8 assay and colony formation assay in HeLa and SiHa cells. We analyzed cell cycle and apoptosis through flow cytometry. GFP-LC3 puncta and transmission electron microscopy were used to observe autophagic bodies. Wound-healing assay and transwell assay were used for evaluating the migration of cells. Western blot was applied to detect protein expression levels.

Results

6-Shogaol could suppress cell proliferation and migration, cause cell cycle arrest in the G2/M phase in HeLa and SiHa cells. Moreover, 6-shogaol triggered the apoptosis process through the mitochondrial pathway by downregulating the expression levels of p-PI3K, p-Akt and p-mTOR. Further research indicated that the induction of apoptosis by 6-shogaol was remarkably decreased after the treatment of ROS scavenger and PI3K agonist. Additionally, 6-shogaol increased the number of LC3-positive puncta and autophagic bodies per cell in both HeLa and SiHa cells. Pretreatment of cells with Bafilomycin A1, an autophagy inhibitor, accelerated 6-shogaol mediated cell apoptosis, suggesting that induction of autophagy by 6-shogaol is suppressive to apoptosis. Furthermore, in vivo data revealed that 6-shogaol significantly inhibited tumor growth and cell proliferation in tumor tissues.

Conclusion

These findings suggested that 6-shogaol could be developed as a functional food ingredient, which is potentially used as therapeutic agents for patients with cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PI3K:

Phosphatidylinositol 3-kinase

AKT:

Protein kinase B

mTOR:

Mammalian target of rapamycin

CCK:

Cell-counting kit

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

Dimethyl sulfoxide

FBS:

Fetal bovine serum

HRP:

Horseradish peroxidase

PBS:

Phosphate-buffered saline

Δψm:

Mitochondrial membrane potential

PCNA:

Proliferating cell nuclear antigen

EDTA:

Ethylene dinitrilotetraacetic acid

NAC:

N-Acetyl-cysteine

PARP:

Poly ADP-ribose polymerase

IGF-1:

Insulin-like growth factors-1

ROS:

Reactive oxygen species

DCFH-DA:

2, 7-dichlorofluorescein diacetate

CDK:

Cyclin-dependent kinases

SDS-PAGE:

Sulfate-polyacrylamide gel electrophoresis

Cdc:

Cell division cycle

H&E:

Hematoxylin and eosin

References

  1. Chrysostomou AC, Stylianou DC, Constantinidou A, Kostrikis LG (2018) Cervical cancer screening programs in Europe: the transition towards HPV vaccination and population-based HPV testing. Viruses. https://doi.org/10.3390/v10120729

    Article  PubMed  PubMed Central  Google Scholar 

  2. Li H, Wu X, Cheng X (2016) Advances in diagnosis and treatment of metastatic cervical cancer. J Gynecol Oncol 27(4):e43. https://doi.org/10.3802/jgo.2016.27.e43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mrklas KJ, MacDonald S, Shea-Budgell MA, Bedingfield N, Ganshorn H, Glaze S, Bill L, Healy B, Healy C, Guichon J, Colquhoun A, Bell C, Richardson R, Henderson R, Kellner J, Barnabe C, Bednarczyk RA, Letendre A, Nelson GS (2018) Barriers, supports, and effective interventions for uptake of human papillomavirus- and other vaccines within global and Canadian Indigenous peoples: a systematic review protocol. Syst Rev 7(1):40. https://doi.org/10.1186/s13643-018-0692-y

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ali BH, Blunden G, Tanira MO, Nemmar A (2008) Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem Toxicol 46(2):409–420. https://doi.org/10.1016/j.fct.2007.09.085

    Article  CAS  PubMed  Google Scholar 

  5. Lantz RC, Chen GJ, Sarihan M, Solyom AM, Jolad SD, Timmermann BN (2007) The effect of extracts from ginger rhizome on inflammatory mediator production. Phytomedicine 14(2–3):123–128. https://doi.org/10.1016/j.phymed.2006.03.003

    Article  CAS  PubMed  Google Scholar 

  6. Shukla Y, Singh M (2007) Cancer preventive properties of ginger: a brief review. Food Chem Toxicol 45(5):683–690. https://doi.org/10.1016/j.fct.2006.11.002

    Article  CAS  PubMed  Google Scholar 

  7. Ling H, Yang H, Tan SH, Chui WK, Chew EH (2010) 6-Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion by reducing matrix metalloproteinase-9 expression via blockade of nuclear factor-kappaB activation. Br J Pharmacol 161(8):1763–1777. https://doi.org/10.1111/j.1476-5381.2010.00991.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jolad SD, Lantz RC, Solyom AM, Chen GJ, Bates RB, Timmermann BN (2004) Fresh organically grown ginger (Zingiber officinale): composition and effects on LPS-induced PGE2 production. Phytochemistry 65(13):1937–1954. https://doi.org/10.1016/j.phytochem.2004.06.008

    Article  CAS  PubMed  Google Scholar 

  9. Jolad SD, Lantz RC, Chen GJ, Bates RB, Timmermann BN (2005) Commercially processed dry ginger (Zingiber officinale): composition and effects on LPS-stimulated PGE2 production. Phytochemistry 66(13):1614–1635. https://doi.org/10.1016/j.phytochem.2005.05.007

    Article  CAS  PubMed  Google Scholar 

  10. Hung JY, Hsu YL, Li CT, Ko YC, Ni WC, Huang MS, Kuo PL (2009) 6-Shogaol, an active constituent of dietary ginger, induces autophagy by inhibiting the AKT/mTOR pathway in human non-small cell lung cancer A549 cells. J Agric Food Chem 57(20):9809–9816. https://doi.org/10.1021/jf902315e

    Article  CAS  PubMed  Google Scholar 

  11. Tan BS, Kang O, Mai CW, Tiong KH, Khoo AS, Pichika MR, Bradshaw TD, Leong CO (2013) 6-Shogaol inhibits breast and colon cancer cell proliferation through activation of peroxisomal proliferator activated receptor gamma (PPARgamma). Cancer Lett 336(1):127–139. https://doi.org/10.1016/j.canlet.2013.04.014

    Article  CAS  PubMed  Google Scholar 

  12. Liang T, He Y, Chang YH, Liu XT (2019) 6-shogaol a active component from ginger inhibits cell proliferation and induces apoptosis through inhibition of STAT-3 translocation in ovarian cancer cell lines (A2780). Biotechnol Bioproc E 24(3):560–567. https://doi.org/10.1007/s12257-018-0502-3

    Article  CAS  Google Scholar 

  13. Li TY, Chiang BH (2017) 6-shogaol induces autophagic cell death then triggered apoptosis in colorectal adenocarcinoma HT-29 cells. Biomed Pharmacother 93:208–217. https://doi.org/10.1016/j.biopha.2017.06.038

    Article  CAS  PubMed  Google Scholar 

  14. Kondo Y, Kanzawa T, Sawaya R, Kondo S (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5(9):726–734. https://doi.org/10.1038/nrc1692

    Article  CAS  PubMed  Google Scholar 

  15. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6(4):463–477. https://doi.org/10.1016/s1534-5807(04)00099-1

    Article  CAS  PubMed  Google Scholar 

  16. Codogno P, Mehrpour M, Proikas-Cezanne T (2011) Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat Rev Mol Cell Biol 13(1):7–12. https://doi.org/10.1038/nrm3249

    Article  CAS  PubMed  Google Scholar 

  17. Carew JS, Nawrocki ST, Kahue CN, Zhang H, Yang C, Chung L, Houghton JA, Huang P, Giles FJ, Cleveland JL (2007) Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 110(1):313–322. https://doi.org/10.1182/blood-2006-10-050260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Man S, Wang H, Zhou J, Lu Y, Su Y, Ma L (2019) Cardiac glycoside compound isolated from Helleborus thibetanus Franch displays potent toxicity against HeLa cervical carcinoma cells through ROS-independent autophagy. Chem Res Toxicol 32(12):2479–2487. https://doi.org/10.1021/acs.chemrestox.9b00318

    Article  CAS  PubMed  Google Scholar 

  19. Wang Q, Yan SP, Chu DX, Xie Y, Wang CF, Zhang JY, Li WC, Guo RX (2019) Silencing of Long Non-Coding RNA RP1-93H18.6 acts as a tumor suppressor in cervical cancer through the blockade of the PI3K/Akt axis. Mol Ther Nucleic Acids 19:304–317. https://doi.org/10.1016/j.omtn.2019.10.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weidner MS, Sigwart K (2000) The safety of a ginger extract in the rat. J Ethnopharmacol 73(3):513–520. https://doi.org/10.1016/s0378-8741(00)00340-8

    Article  CAS  PubMed  Google Scholar 

  21. Mahomoodally MF, Aumeeruddy MZ, Rengasamy KRR, Roshan S, Hammad S, Pandohee J, Hu X, Zengin G (2019) Ginger and its active compounds in cancer therapy: from folk uses to nano-therapeutic applications. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2019.08.009

    Article  PubMed  Google Scholar 

  22. Schwartz GK, Shah MA (2005) Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol 23(36):9408–9421. https://doi.org/10.1200/JCO.2005.01.5594

    Article  CAS  PubMed  Google Scholar 

  23. Wu JJ, Omar HA, Lee YR, Teng YN, Chen PS, Chen YC, Huang HS, Lee KH, Hung JH (2015) 6-Shogaol induces cell cycle arrest and apoptosis in human hepatoma cells through pleiotropic mechanisms. Eur J Pharmacol 762:449–458. https://doi.org/10.1016/j.ejphar.2015.06.032

    Article  CAS  PubMed  Google Scholar 

  24. Ray A, Vasudevan S, Sengupta S (2015) 6-Shogaol inhibits breast cancer cells and stem cell-like spheroids by modulation of notch signaling pathway and induction of autophagic cell death. PLoS One 10(9):e0137614. https://doi.org/10.1371/journal.pone.0137614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ishiguro K, Ando T, Watanabe O, Goto H (2008) Specific reaction of alpha, beta-unsaturated carbonyl compounds such as 6-shogaol with sulfhydryl groups in tubulin leading to microtubule damage. FEBS Lett 582(23–24):3531–3536. https://doi.org/10.1016/j.febslet.2008.09.027

    Article  CAS  PubMed  Google Scholar 

  26. Gan FF, Nagle AA, Ang X, Ho OH, Tan SH, Yang H, Chui WK, Chew EH (2011) Shogaols at proapoptotic concentrations induce G(2)/M arrest and aberrant mitotic cell death associated with tubulin aggregation. Apoptosis 16(8):856–867. https://doi.org/10.1007/s10495-011-0611-3

    Article  CAS  PubMed  Google Scholar 

  27. Park M, Chae HD, Yun J, Jung M, Kim YS, Kim SH, Han MH, Shin DY (2000) Constitutive activation of cyclin B1-associated cdc2 kinase overrides p53-mediated G2-M arrest. Cancer Res 60(3):542–545

    CAS  PubMed  Google Scholar 

  28. Xu C, Wang X, Zhu Y, Dong X, Liu C, Zhang H, Liu L, Huang S, Chen L (2016) Rapamycin ameliorates cadmium-induced activation of MAPK pathway and neuronal apoptosis by preventing mitochondrial ROS inactivation of PP2A. Neuropharmacology 105:270–284. https://doi.org/10.1016/j.neuropharm.2016.01.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9(1):47–59. https://doi.org/10.1038/nrm2308

    Article  CAS  PubMed  Google Scholar 

  30. Gong L, Tang Y, An R, Lin M, Chen L, Du J (2017) RTN1-C mediates cerebral ischemia/reperfusion injury via ER stress and mitochondria-associated apoptosis pathways. Cell Death Dis 8(10):e3080. https://doi.org/10.1038/cddis.2017.465

    Article  PubMed  PubMed Central  Google Scholar 

  31. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8(9):741–752. https://doi.org/10.1038/nrm2239

    Article  CAS  PubMed  Google Scholar 

  32. Schumacker PT (2006) Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 10(3):175–176. https://doi.org/10.1016/j.ccr.2006.08.015

    Article  CAS  PubMed  Google Scholar 

  33. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84. https://doi.org/10.1016/j.biocel.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  34. White E (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 12(6):401–410. https://doi.org/10.1038/nrc3262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang G, Zhang T, Sun W, Wang H, Yin F, Wang Z, Zuo D, Sun M, Zhou Z, Lin B, Xu J, Hua Y, Li H, Cai Z (2017) Arsenic sulfide induces apoptosis and autophagy through the activation of ROS/JNK and suppression of Akt/mTOR signaling pathways in osteosarcoma. Free Radic Biol Med 106:24–37. https://doi.org/10.1016/j.freeradbiomed.2017.02.015

    Article  CAS  PubMed  Google Scholar 

  36. Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, Han W, Lou F, Yang J, Zhang Q, Wang X, He C, Pan H (2013) Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis 4:e838. https://doi.org/10.1038/cddis.2013.350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890. https://doi.org/10.1016/j.cell.2009.11.007

    Article  CAS  PubMed  Google Scholar 

  38. Savagner P (2015) Epithelial-mesenchymal transitions: from cell plasticity to concept elasticity. Curr Top Dev Biol 112:273–300. https://doi.org/10.1016/bs.ctdb.2014.11.021

    Article  CAS  PubMed  Google Scholar 

  39. Javadian M, Gharibi T, Shekari N, Abdollahpour-Alitappeh M, Mohammadi A, Hossieni A, Mohammadi H, Kazemi T (2019) The role of microRNAs regulating the expression of matrix metalloproteinases (MMPs) in breast cancer development, progression, and metastasis. J Cell Physiol 234(5):5399–5412. https://doi.org/10.1002/jcp.27445

    Article  CAS  PubMed  Google Scholar 

  40. Cheng G, Gao F, Sun X, Bi H, Zhu Y (2016) Paris saponin VII suppresses osteosarcoma cell migration and invasion by inhibiting MMP2/9 production via the p38 MAPK signaling pathway. Mol Med Rep 14(4):3199–3205. https://doi.org/10.3892/mmr.2016.5663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Porta C, Paglino C, Mosca A (2014) Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol 4:64. https://doi.org/10.3389/fonc.2014.00064

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ciruelos Gil EM (2014) Targeting the PI3K/AKT/mTOR pathway in estrogen receptor-positive breast cancer. Cancer Treat Rev 40(7):862–871. https://doi.org/10.1016/j.ctrv.2014.03.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College (Grant No. GTZK201810); Key laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education (Grant No. GKE2018-KF01); Guangdong Academic of Sciences Special Project of Science and Technology Development (Grant No. 2016GDASRC-0104); and Guangdong Key Laboratory of Animal Conservation and Resource Utilization (Grant No. GIABR-KF201901); The Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU); Open Project of Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine) (Grant No. WDCM2019012).

Author information

Authors and Affiliations

Authors

Contributions

XDP: Conceived, Designed, Data curation, Formal analysis, Writing-review & editing. ZLH: Data curation and Formal analysis. HLY: Data curation and Writing-review & editing. JSX: Writing-review & editing. LL: Data curation and Formal analysis. JZG: Data curation and Formal analysis. PZS: Data curation and Formal analysis. JHW: Data curation, Formal analysis and Writing-review and editing. LHJ: Conceived, Designed, Data curation, Formal analysis and Writing-review and editing; Undertake related research programs and fund this study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Li-He Jiang.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3106 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, XD., He, ZL., Yao, HL. et al. 6-Shogaol from ginger shows anti-tumor effect in cervical carcinoma via PI3K/Akt/mTOR pathway. Eur J Nutr 60, 2781–2793 (2021). https://doi.org/10.1007/s00394-020-02440-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02440-9

Keywords

Navigation