Skip to main content
Log in

Molecular mechanisms involved in endothelial cell aging: role of telomerase reverse transcriptase

Molekulare Mechanismen in der Endothelzellalterung – Rolle der Telomerase Reversen Transkriptase

  • CONTRIBUTION TO THE MAIN TOPIC
  • Published:
Zeitschrift für Gerontologie und Geriatrie Aims and scope Submit manuscript

Abstract

Aging is one major risk factor for the incidence of coronary artery disease and the development of atherosclerosis. The functional integrity of the endothelial cell monolayer is essential to prevent lesion formation. Endothelial cells show profound changes with age. However, the molecular mechanisms are not well understood. Important players in the process of endothelial cell aging are reactive oxygen species, nitric oxide bioavailability, mitochondrial integrity and the activity of telomerase reverse transcriptase. This review will demonstrate the evidence that these processes are involved in endothelial cell aging and linked to each other. The future goal of understanding endothelial cell aging would allow for an anti-aging therapy to reduce the influence of aging in the development of atherosclerosis and coronary artery disease.

Zusammenfassung

Altern ist einer der bekanntesten unabhängigen Risikofaktoren für das Auftreten der koronaren Gefäßerkrankung und die Entstehung der Atherosklerose. Die funktionale Integrität der Endothelzellen, der innersten Schicht der Blutgefäße, ist ein wesentlicher Schutz vor Atherosklerose-Entstehung. Jedoch kommt es bedingt durch das Altern zu einer Veränderung der Endothelzellen. Die molekularen Mechanismen, die in der Zelle zu diesen Veränderungen beitragen, sind jedoch nur unzureichend aufgeklärt. Wichtige Faktoren für die Entstehung der Endothelzellalterung scheinen reaktive Sauerstoffspezies, die Verfügbarkeit von Stickstoffmonoxid, die Funktionalität der Mitochondrien und die Aktivität der Telomerase Reversen Transkriptase zu sein. Dieser Übersichtsartikel will die wissenschafltichen Nachweise, dass diese Faktoren eine Rolle bei der Zellalterung spielen, vorstellen und eine mögliche Abhängigkeit dieser Faktoren von einander darlegen. Denn ein besseres Verständnis der Endothelzellalterung ist notwendig für ein mögliches therapeutisches Eingreifen, um den negativen Einfluss des Alterns bei koronaren Gefäßerkrankungen zu verringern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ross R (1999) Atherosclerosis – an inflammatory disease. N Engl J Med 340:115–126

    Article  PubMed  CAS  Google Scholar 

  2. Ross R, Faggiotto A, Bowen-Pope D, Raines E (1984) The role of endothelial injury and platelet and macrophage interactions in atherosclerosis. Circulation 70:III77–82

    PubMed  CAS  Google Scholar 

  3. Hoffmann J, Haendeler J, Aicher A, Rossig L, Vasa M, Zeiher AM, Dimmeler S (2001) Aging enhances the sensitivity of endothelial cells toward apoptotic stimuli: important role of nitric oxide. Circ Res 89:709–715

    Article  PubMed  CAS  Google Scholar 

  4. Miyashiro JK, Poppa V, Berk BC (1997) Flow-induced vascular remodeling in the rat carotid artery diminishes with age. Circ Res 81:311–319

    PubMed  CAS  Google Scholar 

  5. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  PubMed  CAS  Google Scholar 

  6. Haendeler J, Hoffmann J, Diehl JF, Vasa M, Spyridopoulos I, Zeiher AM, Dimmeler S (2004) Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ Res 94:768–775

    Article  PubMed  CAS  Google Scholar 

  7. Bode-Boger SM, Martens-Lobenhoffer J, Tager M, Schroder H, Scalera F (2005) Aspirin reduces endothelial cell senescence. Biochem Biophys Res Commun 334:1226–1232

    Article  PubMed  CAS  Google Scholar 

  8. Misiti S, Nanni S, Fontemaggi G, Cong YS, Wen J, Hirte HW, Piaggio G, Sacchi A, Pontecorvi A, Bacchetti S, Farsetti A (2000) Induction of hTERT expression and telomerase activity by estrogens in human ovary epithelium cells. Mol Cell Biol 20:3764–3771

    Article  PubMed  CAS  Google Scholar 

  9. Ogawa D, Nomiyama T, Nakamachi T, Heywood EB, Stone JF, Berger JP, Law RE, Bruemmer D (2006) Activation of peroxisome proliferator-activated receptor gamma suppresses telomerase activity in vascular smooth muscle cells. Circ Res 98:e50–59

    Article  PubMed  CAS  Google Scholar 

  10. Nathan C, Xie QW (1994) Regulation of biosynthesis of nitric oxide. J Biol Chem 269:13725–13728

    PubMed  CAS  Google Scholar 

  11. Moroi M, Zhang L, Yasuda T, Virmani R, Gold HK, Fishman MC, Huang PL (1998) Interaction of genetic deficiency of endothelial nitric oxide, gender, and pregnancy in vascular responses to injury in mice. J Clin Invest 101:1225–1232

    Article  PubMed  CAS  Google Scholar 

  12. Murohara T, Witzenbichler B, Spyridopoulos I, Asahara T, Ding B, Sullivan A, Losordo DW, Isner JM (1999) Role of endothelial nitric oxide synthase in endothelial cell migration. Arterioscler Thromb Vasc Biol 19:1156–1161

    PubMed  CAS  Google Scholar 

  13. Chou TC, Yen MH, Li CY, Ding YA (1998) Alterations of nitric oxide synthase expression with aging and hypertension in rats. Hypertension 31:643–648

    PubMed  CAS  Google Scholar 

  14. Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, Komuro I (2002) Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation 105:1541–1544

    Article  PubMed  CAS  Google Scholar 

  15. Hamilton CA, Brosnan MJ, McIntyre M, Graham D, Dominiczak AF (2001) Superoxide excess in hypertension and aging: a common cause of endothelial dysfunction. Hypertension 37:529–534

    PubMed  CAS  Google Scholar 

  16. van der Loo B, Labugger R, Skepper JN, Bachschmid M, Kilo J, Powell JM, Palacios-Callender M, Erusalimsky JD, Quaschning T, Malinski T, Gygi D, Ullrich V, Luscher TF (2000) Enhanced peroxynitrite formation is associated with vascular aging. J Exp Med 192:1731–1744

    Article  PubMed  CAS  Google Scholar 

  17. Higashi Y, Sasaki S, Nakagawa K, Kimura M, Noma K, Hara K, Jitsuiki D, Goto C, Oshima T, Chayama K, Yoshizumi M (2006) Tetrahydrobiopterin improves aging-related impairment of endothelium-dependent vasodilation through increase in nitric oxide production. Atherosclerosis 186:390–395

    Article  PubMed  CAS  Google Scholar 

  18. Forstermann U, Munzel T (2006) Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113:1708–1714

    Article  PubMed  CAS  Google Scholar 

  19. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    Article  PubMed  CAS  Google Scholar 

  20. Passos JF, von Zglinicki T (2005) Mitochondria, telomeres and cell senescence. Exp Gerontol 40:466–472

    Article  PubMed  CAS  Google Scholar 

  21. Schwarze SR, Weindruch R, Aiken JM (1998) Oxidative stress and aging reduce COX I RNA and cytochrome oxidase activity in Drosophila. Free Radic Biol Med 25:740–747

    Article  PubMed  CAS  Google Scholar 

  22. Davies SM, Poljak A, Duncan MW, Smythe GA, Murphy MP (2001) Measurements of protein carbonyls, ortho- and meta-tyrosine and oxidative phosphorylation complex activity in mitochondria from young and old rats. Free Radic Biol Med 31:181–190

    Article  PubMed  CAS  Google Scholar 

  23. Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S, Nair KS (2005) Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci USA 102:5618–5623

    Article  PubMed  CAS  Google Scholar 

  24. Krishnan KJ, Greaves LC, Reeve AK, Turnbull DM (2007) Mitochondrial DNA mutations and aging. Ann NY Acad Sci 1100:227–240

    Article  PubMed  CAS  Google Scholar 

  25. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly YM, Gidlof S, Oldfors A, Wibom R, Tornell J, Jacobs HT, Larsson NG (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–423

    Article  PubMed  CAS  Google Scholar 

  26. de Lange T (1998) Telomeres. Nature 392:753–754

    Article  PubMed  CAS  Google Scholar 

  27. Blackburn EH (2000) Telomere states and cell fates. Nature 408:53–56

    Article  PubMed  CAS  Google Scholar 

  28. Greider CW, Blackburn EH (1989) A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337:331–337

    Article  PubMed  CAS  Google Scholar 

  29. Greider CW (1996) Telomere length regulation. Annu Rev Biochem 65:337–365

    Article  PubMed  CAS  Google Scholar 

  30. Nakamura TM, Cech TR (1998) Reversing time: origin of telomerase. Cell 92:587–590

    Article  PubMed  CAS  Google Scholar 

  31. Kang SS, Kwon T, Kwon DY, Do SI (1999) Akt protein kinase enhances human telomerase activity through phosphorylation of telomerase reverse transcriptase subunit. J Biol Chem 274:13085–13090

    Article  PubMed  CAS  Google Scholar 

  32. Haendeler J, Hoffmann J, Rahman S, Zeiher AM, Dimmeler S (2003) Regulation of telomerase activity and antiapoptotic function by protein-protein interaction and phosphorylation. FEBS Lett 536:180–186

    Article  PubMed  CAS  Google Scholar 

  33. Vasa M, Breitschopf K, Zeiher AM, Dimmeler S (2000) Nitric oxide activates telomerase and delays endothelial cell senescence. Circ Res 87:540–542

    PubMed  CAS  Google Scholar 

  34. Santos JH, Meyer JN, Skorvaga M, Annab LA, Van Houten B (2004) Mitochondrial hTERT exacerbates freeradical-mediated mtDNA damage. Aging Cell 3:399–411

    Article  PubMed  CAS  Google Scholar 

  35. Santos JH, Meyer JN, Van Houten B (2006) Mitochondrial localization of telomerase as a determinant for hydrogen peroxide-induced mitochondrial DNA damage and apoptosis. Hum Mol Genet 15:1757–1768

    Article  PubMed  CAS  Google Scholar 

  36. Haendeler J, Goy C, Droese S, Siebels I, Spyridopoulos I, Brandt U (2006) Mitochondrial telomerase reverse transcriptase binds to and protects mitochondrial DNA from damage. Circulation 114(Suppl IV):328–329

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Haendeler PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakob, S., Haendeler, J. Molecular mechanisms involved in endothelial cell aging: role of telomerase reverse transcriptase. Z Gerontol Geriat 40, 334–338 (2007). https://doi.org/10.1007/s00391-007-0482-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00391-007-0482-y

Key words

Schlüsselwörter

Navigation