Skip to main content

Advertisement

Log in

Downscaling projections of climate change in Sao Tome and Principe Islands, Africa

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Sao Tome and Principe is a small insular African country extremely vulnerable to rising sea levels and impacts such as inundation, shore line change, and salt water intrusion into underground aquifers. Projections of climate change have considered coarse model resolutions. The objective of this work is to dynamically downscale the global model projections to 4-km resolution and to assess the climate change in the Sao Tome and Principe islands. The global climate projections are provided by the Canadian Earth System Model under two Representative Concentration Pathways greenhouse gas scenarios, RCP4.5 and RCP8.5. The downscaling is produced by the Eta regional climate model. The baseline period is taken between 1971 and 2000, and the future climate period is taken between 2041 and 2070. The 2-m temperature simulations show good agreement with station data. The model simulates temperature more accurately than precipitation. The precipitation simulations systematically show underestimation and delay of the rainy and the dry seasons by about 1 month, a feature inherited from the global climate model. In the middle of the 21st century, projections show the strongest warming in the elevated parts of the Sao Tome Island, especially in February under RCP8.5. Warmer nights and warmer days become more frequent in the islands when compared with those in the present. While under RCP4.5, precipitation increases in the islands; under RCP8.5, it decreases everywhere in both islands. Heavy precipitation rates should increase, especially in the south-southwestern parts of the Sao Tome islands. Detailed spatial variability of the temperature and precipitation changes in the islands can only be revealed at very high spatial model resolution. Implications for the potential energy production from two major river basins are assessed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abiodun BJ, Lawal KA, Salami AT, Abatan AA (2013) Potential influences of global warming on future climate and extreme events in Nigeria. Reg Environ Change 13(3):477–491. https://doi.org/10.1007/s10113-012-0381-7

    Article  Google Scholar 

  • Akinsanola AA, Zhou W (2018a) Projection of West African summer monsoon rainfall in dynamically downscaled CMIP5 models. Clim Dyn 53:81–95. https://doi.org/10.1007/s00382-018-4568-6

    Article  Google Scholar 

  • Akinsanola AA, Zhou W (2018b) Projections of West African summer monsoon rainfall extremes from two CORDEX models. Clim Dyn 52:2017–2028. https://doi.org/10.1007/s00382-018-4238-8

    Article  Google Scholar 

  • Alexander LV, Zhang X, Peterson TC et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:1984–2012

    Google Scholar 

  • Arora VK, Boer GJ (2010) Uncertainties in the 20th century carbon budget associated with land use change. Glob Change Biol 16(12):3327–3348. https://doi.org/10.1111/j.1365-2486.2010.02202.x

    Article  Google Scholar 

  • Arora VK, Scinocca JF, Boer GJ, Christian JR, Denman KL, Flato GM, Kharin VV, Lee WG, Merryfield WJ (2011) Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys Res Lett 38:L05805. https://doi.org/10.1029/2010gl046270

    Article  Google Scholar 

  • Bárdossy A, Pegram G (2011) Downscaling precipitation using regional climate models and circulation patterns toward hydrology. Water Resour Res 47:W04505

    Article  Google Scholar 

  • Betts AK, Miller MJ (1986) A new convective adjustment scheme. Part II: single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Q J R Meteorol Soc 112(473):693–709. https://doi.org/10.1002/qj.49711247308

    Article  Google Scholar 

  • Camberlin P, Barraud G, Bigot S, Dewitte O, Makanzu Imwangana F, Maki Mateso J-C, Martiny N, Monsieurs E, Moron V, Pellarin T, Philippon N, Sahani M, Samba G (2019) Evaluation of remotely sensed rainfall products over Central Africa. Q J R Meteorol Soc 145:2115–2138. https://doi.org/10.1002/qj.3547

    Article  Google Scholar 

  • Cataldi M, Machado CO, Guilhon LGF, Chou SC, Gomes JL, Bustamante JF (2007) Análise das previsões de precipitação obtidas com a utilização do modelo Eta como insumo para modelos de previsão semanal de vazão natural. Revista Brasileira de Recursos Hídricos 12(3):5–12. https://doi.org/10.21168/rbrh.v12n3.p5-12

    Article  Google Scholar 

  • Chang M, Dereczynski C, Freitas MA, Chou SC (2014) Climate change index: a proposed methodology for assessing susceptibility to future climatic extremes. Am J Clim Change 3(03):326. https://doi.org/10.4236/ajcc.2014.33029

    Article  Google Scholar 

  • Chou SC, Bustamante JF, Gomes JL (2005) Evaluation of Eta Model seasonal precipitation forecasts over South America. Nonlinear Processes in Geophysics 12(4):537–555. https://doi.org/10.5194/npg-12-537-2005

    Article  Google Scholar 

  • Chou SC, Marengo JA, Lyra AA, Sueiro G, Pesquero JF, Alves LM, Kay G, Betts R, Chagas D, Gome JL, Bustamante JF, Tavares P (2012) Downscaling of South America present climate driven by 4-member HadCM3 runs. Clim Dyn 38(3–4):635–653. https://doi.org/10.1007/s00382-011-1002-8

    Article  Google Scholar 

  • Chou SC, Lyra A, Mourão C, Dereczynski C, Pilotto I, Gomes JL, Bustamante JF, Tavares P, Silva A, Rodrigues D, Campos D, Chagas D, Sueiro G, Siqueira G, Nobre P, Marengo J (2014a) Evaluation of the Eta simulations nested in three global climate models. Am J Clim Change 3(5):438–454. https://doi.org/10.4236/ajcc.2014.35039

    Article  Google Scholar 

  • Chou SC, Lyra A, Mourão C, Dereczynski C, Pilotto I., Gomes JL, Bustamante JF, Tavares P, Silva A, Rodrigues D, Campos D, Chagas D, Sueiro G, Siqueira G, Marengo J (2014b) Assessment of climate change over South America under RCP 4.5 and 8.5 downscaling scenarios. American Journal of Climate Change, 3(5), 512-525. https://doi.org/10.4236/ajcc.2014.35043

    Article  Google Scholar 

  • Chou SC., Lyra A, Sueiro G., Silva A, Tavares P, Nunes LH, Marengo J (2014c) 5-km resolution Eta model downscaling of present climate in the city of Santos, Brazil. In Milankovitch Anniversary UNESCO Symposium-Water Management in Transition Countries as Impacted by Climate Change and Other Global Changes, Lessons from Paleoclimate, and Regional Issues. Jaroslav Černi Institute for the Development of Water Resources, Belgrade (Serbia)

  • Chylek P, Li J, Dubey MK, Wang M, Lesins G (2011) Observed and model simulated 20th century Arctic temperature variability: canadian earth system model CanESM2. Atmos Chem Phys Discuss 11(8):22893–22907. https://doi.org/10.5194/acpd-11-22893-2011

    Article  Google Scholar 

  • Diallo I, Sylla MB, Giorgi F, Gaye AT, Camara M (2012) Multimodel GCM–RCM ensemble-based projections of temperature and precipitation over West Africa for the early 21st century. Int J Geophys 2012:972896. https://doi.org/10.1155/2012/972896

    Article  Google Scholar 

  • Diallo I, Giorgi F, Deme A, Tall M, Mariotti L, Gaye AT (2016) Projected changes of summer monsoon extremes and hydroclimatic regimes over West Africa for the twenty-first century. Clim Dyn 47:3931–3954. https://doi.org/10.1007/s00382-016-3052-4

    Article  Google Scholar 

  • Dosio A, Jones RG, Jack C, Lennard C, Nikulin G, Hewitson B (2019) What can we know about future precipitation in Africa? Robustness, significance and added value of projections from a large ensemble of regional climate models. Clim Dyn 53:5833–5858. https://doi.org/10.1007/s00382-019-04900-3

    Article  Google Scholar 

  • Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res 108:8851. https://doi.org/10.1029/2002jd003296

    Article  Google Scholar 

  • Ferrier BS, Jin Y, Lin Y, Black T, Rogers E, DiMego G (2002) Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta model, In: Paper presented at 15th conference on numerical weather prediction. American Meteorological Society, San Antonio, TX, pp 280–283

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37(12):4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  • Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC, Collins W, Cox P, Driouech F, Emori S, Eyring V, Forest C, Gleckler P, Guilyardi E, Jakob C, Kattsov V, Reason C, Rummukainen M (2013) Evaluation of climate models. In: climate change 2013: the physical science basis. Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. pp 741–866. https://doi.org/10.1017/cbo9781107415324.020

  • Fotso-Nguemo TC, Vondou DA, Pokam WM, Djomou ZY, Diallo I, Haensler A, Tchotchou LAD, Kamsu-Tamo PH, Gaye AT, Tchawoua C (2017) On the added value of the regional climate model REMO in the assessment of climate change signal over Central Africa. Clim Dyn 49:3813–3838. https://doi.org/10.1007/s00382-017-3547-7

    Article  Google Scholar 

  • Fotso-Nguemo TC, Chamani R, Yepdo ZD, Sonkoué D, Matsaguim CN, Vondou DA, Tanessong RS (2018) Projected trends of extreme rainfall events from CMIP5 models over Central Africa. Atmos Sci Lett 19(2):e803. https://doi.org/10.1002/asl.803

    Article  Google Scholar 

  • Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, Husak G, Rowland J, Harrison L, Hoell A, Michaelsen J (2015) The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci Data 2:150066. https://doi.org/10.1038/sdata.2015.66

    Article  Google Scholar 

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. World Meteorological Organization (WMO) Bulletin, 58(3), 175

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GT, Nair V, Giuliani G et al (2012) RegCM4: model description and preliminary tests overmultiple CORDEX domains. Clim Res 52:7–29

    Article  Google Scholar 

  • Giorgi F, Coppola E, Raffaele F, Diro GT, Fuentes RF, Giuliani G, Mamgain A, Llopart MP, Mariotti L, Torma C (2014) Changes in extremes and hydroclimatic regimes in the CREMA ensemble projections. Clim Change 125:39–51

    Article  Google Scholar 

  • Heritage Foundation. Index of Economic Freedom: Sao Tome and Principe. https://www.heritage.org/index/country/saotomeprincipe. Accessed 12 April 2019

  • Hidrorumo Projecto e Gestão (República Democrática de São Tomé e Príncipe). Instituto Para Desenvolvimento Econômico e Social (Org.). Estudo do Potencial Hidroelétrico de São Tomé e Príncipe. São Tomé, 1996. pp 85

  • Hydroconseil (República Democrática de São Tomé e Príncipe) (2011) Departamento de Recursos Naturais e Energia. Actualização do Plano Director de Água e Saneamento do País. Elaborado em 1996. São Tomé, 2011. 55 p

  • Intergovernmental Panel on Climate Change (IPCC) (2013) Annex I: Atlas of Global and Regional Climate Projections [van Oldenborgh GJ, Collins M, Arblaster J, Christensen JH, Marotzke J, Power SB, Rummukainen M, Zhou T]. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker TF, Plattner GK, Tignor MMB, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM]. Cambridge University Press, Cambridge, United Kingdom and New York, USA, pp 1311–1394. https://doi.org/10.1017/cbo9781107415324.029

  • Joyce RJ, Janowiak JE, Arkin PA, Xie P (2004) CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeorol 5(3):487–503. https://doi.org/10.1175/1525-7541(2004)005%3c0487:CAMTPG%3e2.0.CO;2

    Article  Google Scholar 

  • Karl TR, Nicholls N, Ghazi A (1999) Clivar/GCOS/WMO workshop on indices and indicators for climate extremes workshop summary.  In: Karl TR, Nicholls N, Ghazi A (eds) Weather and climate extremes. Springer, Dordrecht, pp 3–7. https://doi.org/10.1007/978-94-015-9265-9_2

    Chapter  Google Scholar 

  • Kniveton DR, Layberry R, Williams CJR, Peck M (2009) Trends in the start of the wet season over Africa. Int J Climatol 29(9):1216–1225. https://doi.org/10.1002/joc.1792

    Article  Google Scholar 

  • Lacis AA, Hansen J (1974) A parameterization for the absorption of solar radiation in the earth’s atmosphere. J Atmos Sci 31(1):118–133. https://doi.org/10.1175/1520-0469(1974)031%3c0118:APFTAO%3e2.0.CO;2

    Article  Google Scholar 

  • Laprise R, Hernández-Díaz L, Tete K, Sushama L, Separovic L, Martynov A, Winger K, Valin M (2013) Climate projections over CORDEX Africa domain using the fifth-generation canadian regional climate model (CRCM5). Clim Dyn 41(11):3219–3246. https://doi.org/10.1007/s00382-012-1651-2

    Article  Google Scholar 

  • Lenderink G, Buishand A, Van Deursen W (2007) Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach. Hydrol Earth Syst Sci 11(3):1145–1159

    Article  Google Scholar 

  • Lyra A, Imbach P, Rodriguez D, Chou SC, Georgiou S, Garofolo L (2017) Projections of climate change impacts on central America tropical rainforest. Clim Change 141(1):93–105. https://doi.org/10.1007/s10584-016-1790-2

    Article  Google Scholar 

  • Lyra A, Tavares P, Chou SC, Sueiro G, Dereczynski C, Sondermann M, Silva A, Marengo J, Giarolla A (2018) Climate change projections over three metropolitan regions in Southeast Brazil using the non-hydrostatic Eta regional climate model at 5-km resolution. Theoret Appl Climatol 132(1–2):663–682. https://doi.org/10.1007/s00704-017-2067-z

    Article  Google Scholar 

  • Marengo JA, Chou SC, Kay G, Alves LM, Pesquero JF, Soares WR, Santos DC, Lyra AA, Sueiro G, Betts R, Chagas DJ, Gomes JL, Bustamante JF, Tavares PS (2012) Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins. Clim Dyn 38(9–10):1829–1848. https://doi.org/10.1007/s00382-011-1155-5

    Article  Google Scholar 

  • Mariotti L, Diallo I, Coppola E, Giorgi F (2014) Seasonal and intraseasonal changes of African monsoon climates in 21st century CORDEX projections. Clim Change 125(1):53–65. https://doi.org/10.1007/s10584-014-1097-0

    Article  Google Scholar 

  • Mellor GL, Yamada T (1974) A hierarchy of turbulence closure models for planetary boundary layers. J Atmos Sci 31(7):1791–1806. https://doi.org/10.1175/1520-0469(1974)031%3c1791:AHOTCM%3e2.0.CO;2

    Article  Google Scholar 

  • Mesinger F (1977) Forward-backward scheme, and its use in a limited area model. Contrib Atmos Phys 50(1977):200–210

    Google Scholar 

  • Mesinger F (1984) A blocking technique for representation of mountains in atmospheric models. Riv Meteorol Aeronaut 44:195–202

    Google Scholar 

  • Mesinger F, Chou SC, Gomes JL, Jovic D, Bastos P, Bustamante JF, Lazic L, Lyra A, Morelli S, Ristic I, Veljovic K (2012) An upgraded version of the Eta model. Meteorol Atmos Phys 116(3–4):63–79. https://doi.org/10.1007/s00703-012-0182-z

    Article  Google Scholar 

  • Mesinger F, Veljovic K, Chou SC, Gomes JL, Lyra A (2016) The eta model: design, use, and added value. In: Hromadka TT, Rao P (eds) Topics in climate modeling, chapter 6. Intech, Rijeka. https://doi.org/10.5772/64956

    Chapter  Google Scholar 

  • Miller DA, White RA (1998) A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling. Earth Interact 2(2):1–26. https://doi.org/10.1175/1087-3562(1998)002%3c0001:ACUSMS%3e2.3.CO;2

    Article  Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747

    Article  Google Scholar 

  • Murray V, McBean G, Bhatt M, Borsch S, Cheong TS, Erian WF, Llosa S, Nadim F, Nunez M, Oyun R, Suarez AG (2012) Chapter 9: Case Studies. Managing the risks of extreme events and disasters to advance climate change adaption: special report of the Intergovernmental Panel on Climate Change, Cambridge, UK, 489-530

  • Niang, I, Ruppel, OC, Abdrabo, MA, Essel, A, Lennard, C, Padgham, J, Urquhart, P (2014) Africa. In: Climate Change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. contribution of working group ii to the fifth assessment report of the intergovernmental panel on climate change. In: Barros, VR, Field, CB, Dokken, DJ, Mastrandrea, MD, Mach, KJ, Bilir, TE, Chatterjee, M, Ebi, KL, Estrada, YO, Genova, RC, Girma, B, Kissel, ES, Levy, AN, MacCracken, S, Mastrandrea, PR, White, LL. Cambridge University Press, Cambridge, New Yorkpp. pp 1199–1265. https://doi.org/10.1017/cbo9781107415386.002

  • Nicholson SE (2018) The ITCZ and the seasonal cycle over equatorial Africa. Bull Am Meteor Soc 99(2):337–348. https://doi.org/10.1175/BAMS-D-16-0287.1

    Article  Google Scholar 

  • Oliveira MS (2009) Avaliação da disponibilidade energética república de São Tomé e Príncipe -Estudo da Viabilidade da Instalação de Pequenas Centrais Hidrelétricas. 2009. 87p. TCC (Graduação) - Curso de Engenharia Elétrica, Universidade de São Carlos, São Carlos

  • Oliveira VA, Mello CR, Viola MR, Srinivasan R (2017) Assessment of climate change impacts on streamflow and hydropower potential in the headwater region of the Grande river basin, Southeastern Brazil. Int J Climatol 37(15):5005–5023. https://doi.org/10.1002/joc.5138

    Article  Google Scholar 

  • Pesquero JF, Chou SC, Nobre CA, Marengo JA (2010) Climate downscaling over South America for 1961–1970 using the Eta Model. Theoret Appl Climatol 99(1–2):75–93. https://doi.org/10.1007/s00704-009-0123-z

    Article  Google Scholar 

  • Pilotto IL, Chou SC, Nobre P (2012) Seasonal climate hindcasts with Eta model nested in CPTEC coupled ocean–atmosphere general circulation model. Theoret Appl Climatol 110(3):437–456. https://doi.org/10.1007/s00704-012-0633-y

    Article  Google Scholar 

  • Pormenor Engenharia (1996) Esquemas de planeamento geral dos sistemas de recursos hídricos: Planeamento do sistema de fornecimento de água potável. São Tomé: Ní., 60 p

  • Sao Tome and Principe (2007) First National Report on the Biodiversity. https://www.cbd.int/doc/world/st/st-nr-01-pt.pdfs. Accessed 17 May 2019

  • Sao Tome and Principe (2009) Fourth national report on the biodiversity. https://www.cbd.int/doc/world/st/st-nr-04-en.pdf. Accessed 17 April 2019

  • Sao Tome and Principe (2012) Deuxieme Communication Nationale. https://unfccc.int/sites/default/files/resource/Second_NC_SaoTome.pdf. Acessed in 17 May 2019

  • Sarr AB, Camara M, Diba I (2015) Spatial distribution of cordex regional climate models biases over West Africa. Int J Geosci 6(9):1018. https://doi.org/10.4236/ijg.2015.69081

    Article  Google Scholar 

  • Schwarzkopf MD, Fels SB (1991) The simplified exchange method revisited: an accurate, rapid method for computation of infrared cooling rates and fluxes. J Geophys Res 96(D5):9075–9096. https://doi.org/10.1029/89JD01598

    Article  Google Scholar 

  • Seluchi ME, Norte FA, Satyamurty P, Chou SC (2003) Analysis of three situations of the foehn effect over the Andes (zonda wind) using the Eta–CPTEC regional model. Weather Forecast 18(3):481–501. https://doi.org/10.1175/1520-0434(2003)18%3c481:AOTSOT%3e2.0.CO;2

    Article  Google Scholar 

  • Seluchi ME, Chou SC, Gramani M (2011) A case study of a winter heavy rainfall event over the Serra do Mar in Brazil. Geofísica Int 50(1):41–56

    Google Scholar 

  • Sonkoué D, Monkam D, Fotso-Nguemo TC, Yepdo ZD, Vondou DA (2019) Evaluation and projected changes in daily rainfall characteristics over Central Africa based on a multi-model ensemble mean of CMIP5 simulations. Theor Appl Climatol 137:2167–2186. https://doi.org/10.1007/s00704-018-2729-5

    Article  Google Scholar 

  • Sylla MB, Giorgi F, Pal JS, Gibba P, Kebe I, Nikiema M (2015) Projected changes in the annual cycle of high-intensity precipitation events over West Africa for the late twenty-first century. J Clim 28(16):6475–6488. https://doi.org/10.1175/JCLI-D-14-00854.1

    Article  Google Scholar 

  • Sylla MB, Nikiema PM, Gibba P, Kebe I, Klutse NAB (2016) Climate change over West Africa: recent trends and future projections. In: Adaptation to climate change and variability in rural West Africa. Springer, Cham, pp 25–40. https://doi.org/10.1007/978-3-319-31499-0_3

    Chapter  Google Scholar 

  • Tamoffo AT, Moufouma-Okia W, Dosio A, James R, Pokam WM, Vondou DA, Fotso-Nguemo TC, Guenang GM, Kamsu-Tamo PH, Nikulin G, Longandjo G, Lennard CJ, Bell J, Takong RR, Haensler A, Tchotchou LAD, Nouayou R (2019) Process-oriented assessment of RCA4 regional climate model projections over the Congo Basin under 1.5 ◦C and 2 ◦C global warming levels: influence of regional moisture fluxes. Clim Dyn 53:1911–1935. https://doi.org/10.1007/s00382-019-04751-y

    Article  Google Scholar 

  • Tavares PS, Giarolla A, Chou SC, Silva AJ, Lyra A (2018) Climate change impact on the potential yield of Arabica coffee in southeast Brazil. Reg Environ Change 18(3):873–883. https://doi.org/10.1007/s10113-017-1236-z

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485. https://doi.org/10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Teichmann C, Eggert B, Elizalde A, Haensler A, Jacob D, Kumar P, Moseley C, Pfeifer S, Rechid D, Remedio AR, Ries H, Petersen J, Preuschman S, Raub T, Saeed F, Sieck K, Weber T (2013) How does a regional climate model modify the projected climate change signal of the driving GCM: a study over different CORDEX regions using REMO. Atmosphere 4(2):214–236. https://doi.org/10.3390/atmos4020214

    Article  Google Scholar 

  • Teutschbein C, Seibert JI (2013) Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions? Hydrol Earth Syst Sci 17:5061–5077

    Article  Google Scholar 

  • Thorncroft CD, Nguyen H, Zhang C, Peyrillé P (2011) Annual cycle of the West African monsoon: regional circulations and associated water vapour transport. Q J R Meteorol Soc 137:129–147

    Article  Google Scholar 

  • United Nations Development Programme (UNDP) (2019) Human Development Reports. Human Development Indicators: Sao Tome and Principe. http://hdr.undp.org/en/countries/profiles/STP. Accessed 12 April 2019

  • Valencio N, Ribeiro WC (2010) São Tomé e Príncipe, África: desafios socioambientais no alvorecer do séc. XXI. Vol I. RiMa Publisher, São Carlos, 148 pp. ISBN: 978-85-7656-187-3

  • Viola MR, De Mello CR, Chou SC, Yanagi SN, Gomes JL (2015) Assessing climate change impacts on Upper Grande River basin hydrology, southeast Brazil. Int J Climatol 35(6):1054–1068. https://doi.org/10.1002/joc.4038

    Article  Google Scholar 

  • Weber TM, Dereczynski CP, Souza RHS, Chou SC, Bustamante JF, Neto ACP (2015) Investigação da previsibilidade sazonal da precipitação na região do alto são francisco em minas gerais. Anuário do Instituto de Geociências 38(2):24–36. https://doi.org/10.11137/2015_2_24_36

    Article  Google Scholar 

  • World Bank (2019) Sao Tome and Principe Overview. http://www.worldbank.org/en/country/saotome/overview. Accessed 12 April 2019

Download references

Acknowledgements

This project is partially funded by the Global Environmental Facility through United Nations Environmental Program (UNEP), the Brazilian Research and Development Foundation (FUNDEP), and the Sao Tome and Principe National Institute of Meteorology, under the grant number 325,329. The first author is partially funded by CNPq PQ 306757/2017-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sin Chan Chou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chou, S.C., de Arruda Lyra, A., Gomes, J.L. et al. Downscaling projections of climate change in Sao Tome and Principe Islands, Africa. Clim Dyn 54, 4021–4042 (2020). https://doi.org/10.1007/s00382-020-05212-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-020-05212-7

Keywords

Navigation