Skip to main content

Advertisement

Log in

Projected changes of summer monsoon extremes and hydroclimatic regimes over West Africa for the twenty-first century

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We use two CORDEX-Africa simulations performed with the regional model RegCM4 to characterize the projected changes in extremes and hydroclimatic regimes associated with the West African Monsoon (WAM). RegCM4 was driven for the period 1970–2100 by the HadGEM2-ES and the MPI-ESM Global Climate Models (GCMs) under the RCP8.5 greenhouse gas concentration pathway. RegCM4 accurately simulates the WAM characteristics in terms of seasonal mean, seasonal cycle, interannual variability and extreme events of rainfall. Overall, both RegCM4 experiments are able to reproduce the large-scale atmospheric circulation for the reference period (i.e. present-day), and in fact show improved performance compared to the driving GCMs in terms of precipitation mean climatology and extreme events, although different shortcomings in the various models are still evident. Precipitation is projected to decrease (increase) over western (eastern) Sahel, although with different spatial detail between RegCM4 and the corresponding driving GCMs. Changes in extreme precipitation events show patterns in line with those of the mean change. The models project different changes in water budget over the Sahel region, where the MPI projects an increased deficit in local moisture supply (E < P) whereas the rest of models project a local surplus (E > P). The E–P change is primarily precipitation driven. The precipitation increases over the eastern and/or central Sahel are attributed to the increase of moisture convergence due to increased water vapor in the boundary layer air column and surface evaporation. On the other hand, the projected dry conditions over the western Sahel are associated with the strengthening of moisture divergence in the upper level (850–300 hPa) combined to both a southward migration of the African Easterly Jet (AEJ) and a weakening of rising motion between the core of the AEJ and the Tropical Easterly Jet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abiodun BJ, Pal JS, Afiesimama EA, Gutowski WJ, Adedoyin A (2008) Simulation of West African monsoon using RegCM3 part II: impacts of deforestation and desertification. Theor Appl Climatol 93:245–261

    Article  Google Scholar 

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Alpert P, Hemming D, Jin F, Kay G, Kitoh A, Mariotti A (2013) The hydrological cycle of the mediterranean. Adv Glob Change Res 50:201–239

    Article  Google Scholar 

  • Bhaskaran B, Ramachandran A, Jones R, Moufouma-Okia W (2012) Regional climate model applications on sub-regional scales over the Indian monsoon regions: the role of domain size on downscaling uncertainty. J Geophys Res 117:D10113. doi:10.1029/2012JD017956

    Google Scholar 

  • Bouagila B, Sushama L (2013) On the current and future dry spell characteristics over Africa. Atmosphere 4(3):272–298

    Article  Google Scholar 

  • Chen TC, Yen MC, Murakami M (1988) The water vapor transport associated with the 30–50 day oscillation over the Asian monsoon regions during 1979 summer. Mon Weather Rev 116:1983–2002

    Article  Google Scholar 

  • Cook KH (1999) Generation of the African easterly jet and its role in determining West African precipitation. J Clim 12:1165–1184

    Article  Google Scholar 

  • Cook K, Vizy EK (2006) Coupled model simulations of the West African monsoon system: 20th and 21st century simulations. J Clim 19:3681–3703

    Article  Google Scholar 

  • Coppola E et al (2014) The bias and climate change signal in the Phase I CREMA experiment. Clim Change 125(1):23–38. doi:10.1007/s10584-014-1137-9

    Article  Google Scholar 

  • Dee et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quat J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Diallo I (2015) Caracterisation du cycle de l’eau dans le systéme de mousson de l’Afrique de l’Ouest et son évolution dans un contexte de changement climatique. Ph.D. Thesis, Cheikh Anta Diop University. Sénégal. 362 pp

  • Diallo I, Camara M, Sylla MB, Gaye AT (2010) Représentation haute résolution du systéme de mousson Ouest Africain avec un modéle climatique régional. Journal des Sciences Pour l’Ingénieur No 12:75–85. Disponible sur. http://www.ajol.info/index.php/jspi/article/viewFile/67978/56073

  • Diallo I, Sylla MB, Giorgi F, Gaye AT, Camara M (2012) Multi-model GCM-RCM ensemble based projections of temperature and precipitation over West Africa for the early twenty-first century. Int J Geophys. doi:10.1155/2012/972896

    Google Scholar 

  • Diallo I, Sylla MB, Gaye AT, Camara M (2013a) Comparaison du climat et de la variabilité interannuelle de la pluie simulée au Sahel par les modèles climatiques régionaux. Sécheresse. doi:10.1684/sec.2013.0382

    Google Scholar 

  • Diallo I, Sylla MB, Camara M, Gaye AT (2013b) Interannual variability of rainfall over the Sahel based on multiple regional climate models simulations. Theor Appl Climatol. doi:10.1007/s00704-012-0791-y

    Google Scholar 

  • Diallo I, Bain CL, Gaye AT, Moufouma-Okia W, Niang C, Dieng MDB, Graham R (2014) Simulation of the Wes African monsoon onset using the HadGEM3-RA regional climate model. Clim Dyn 43(3–4):575–594. doi:10.1007/s00382-014-2219-0

    Article  Google Scholar 

  • Diallo I, Giorgi F, Sukumaran S, Stordal F, Giuliani G (2015) Evaluation of RegCM4 driven by CAM4 over Southern Africa: mean climatology, interannual variability and daily extremes of wet season temperature and precipitation. Theor Appl Climatol. doi:10.1007/s00704-014-1260-6

    Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy P (1993) Biosphere–atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model. Tech Rep, National Center for Atmospheric Research Tech Note NCAR.TN-387+STR, NCAR, Boulder, CO

  • Druyan LM (2011) Studies of twenty-first century precipitation trends over West Africa. Int J Climatol 31:1415–1572. doi:10.1002/joc.2180

    Article  Google Scholar 

  • Druyan LM, Feng J, Cook K, Xue Y et al (2010) The WAMME regional model intercomparison study. Clim Dyn 35:175–192

    Article  Google Scholar 

  • Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48:2313–2335

    Article  Google Scholar 

  • Emanuel KA, Rothman MZ (1999) Development and evaluation of a convection scheme for use in climate models. J Atmos Sci 56:1756–1782

    Article  Google Scholar 

  • Gbobaniyi E, Sarr A, Sylla MB, Diallo I, Lennard C, Diedhiou A et al (2013) Climatology, annual cycle and interannual variability of precipitation and temperature in CORDEX regional climate models simulation over West Africa. Int J Climatol. doi:10.1002/joc.3834

    Google Scholar 

  • Giorgi F (2002) Dependence of surface climate interannual variability on spatial scale. Geophys Res Lett 29:2101

    Article  Google Scholar 

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175–183

    Google Scholar 

  • Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modelling revisited. J Geophys Res 104:6335–6352

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, Bates G (1993a) Development of a second generation regional climate model (RegCM2). I. Boundary layer and radiative transfer processes. Mon Weather Rev 121:2794–2813

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, Bates G, DeCanio G (1993b) Development of a second generation regional climate model (RegCM2). II. Convective processes and assimilation of lateral boundary conditions. Mon Weather Rev 121:2814–2832

    Article  Google Scholar 

  • Giorgi F, Im ES, Coppola E, Diffenbaugh NS, Gao XJ, Mariotti L, Shi Y (2011) Higher hydroclimatic intensity with global warming. J Clim. doi:10.1175/2011JCLI3979.1

    Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GT, Nair V, Giuliani G, Turuncoglu UU, Cozzini S, Güttler I, O’Brien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner AL, Stordal F, Sloan LC, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29. doi:10.3354/cr01018

    Article  Google Scholar 

  • Giorgi F and Coauthors (2014) Changes in extremes and hydroclimatic regimes in the CREMA ensemble projections. Clim Change. doi:10.1007/s10584-014-1117-0

    Google Scholar 

  • Grell G, Dudhia J, Stauffer DR (1994) A description of the fifth generation Penn State/NCAR Mesoscale Model (MM5). National Center for Atmospheric Research Tech Note NCAR/TN-398+STR, NCAR, Boulder, CO

  • Harris I, Jones PD, Osborn TJ, Lister DH (2013) Updated high-resolution grids of monthly climatic observations. Int J Climatol. doi:10.1002/joc.3711

    Google Scholar 

  • Hernández-Díaz L, Laprise R, Sushama L, Martynov A, Winger K, Dugas B (2012) Climate simulation over the CORDEX-Africa domain using the fifth generation Canadian Regional Climate Model (CRCM5). Clim Dyn. doi:10.1007/s00382-012-1387-z

    Google Scholar 

  • Holtslag A, de Bruijn E, Pan HL (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118:1561–1575

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multisatellite precipitation analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J Hydrometeorol 8:38–55

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP Version 2.1. Geophys Res Lett. doi:10.1029/2009GL040000

    Google Scholar 

  • IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis contribution of working group I to the fourth assessment report (AR4) of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2008) Towards new scenarios for analysis of emissions, climate change impacts and response strategies. IPCC Expert Meeting Report onNew Scenarios, Noordwijkerhout, Intergovernmental Panel on Climate Change

  • Jones C, Giorgi F, Asrar G (2011) The coordinated regional downscaling experiment (CORDEX). An international downscaling link to CMIP5. Cliv Exch 16:34–40

    Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J et al (2002) NCEPDOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83(11):1631–1643

    Article  Google Scholar 

  • Kiehl J, Hack J, Bonan G, Boville B, Breigleb B, Williamson D, Rasch P (1996) Description of the NCAR Community Climate Model (CCM3). National Center for Atmospheric Research Tech Note NCAR/TN-420 + STR, NCAR, Boulder, CO

  • Klutse NA, Sylla MB, Diallo I, Sarr A, Dosio A, Diedhiou A, Kamga A, Lamptey B, Ali A, Gbobaniyi EO, Owusu K et al (2016) Daily characteristics of West African summer monsoon precipitation in CORDEX simulations. Theor Appl Climatol 123(1):369–386. doi:10.1007/s00704-014-1352-3

    Article  Google Scholar 

  • Laprise R, Hernàndez-Diaz Tete K, Sushama L, Separovic L, Martynov A, Winger K, Valin M (2013) Climate projections over CORDEX Africa domain using the fifth-generation. Can Reg Clim Model (CRCM5). doi:10.1007/s00382-012-1651-2

    Google Scholar 

  • Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int J Climatol 10:111–127

    Article  Google Scholar 

  • Li L, Diallo I, Xu CY, Stordal F (2015) Hydrological projections under climate change in the near future by RegCM4 in Southern Africa using a large-scale hydrological model. J Hydrol 528:1–16

    Article  Google Scholar 

  • Mariotti A (2010) Recent changes in mediterranean water cycle: a pathway toward long-term regional hydroclimatic change? J Clim 23:1513–1525

    Article  Google Scholar 

  • Mariotti A, Zeng N, Yoon JH, Artale V, Navarra A, Alpert P, Li ZX (2008) Mediterranean water cycle changes: transition to drier twenty-first century conditions in observations and CMIP3 simulations. Environ Res Lett. doi:10.1088/1748-9326/3/4/044001

    Google Scholar 

  • Mariotti L, Coppola E, Sylla MB, Giorgi F, Piani C (2011) Regional climate model simulation of projected twenty-first century climate change over an all-Africa domain: comparison analysis of nested and driving model results. J Geophys Res 116:D15111. doi:10.1029/2010JD015068

    Article  Google Scholar 

  • Mariotti L, Diallo I, Coppola E, Giorgi F (2014) Seasonal and intraseasonal changes of African monsoon climates in twenty-first century CORDEX projections. Clim Change. doi:10.007/s10584-014-1097-0

    Google Scholar 

  • Monerie PA, Fontaine B, Roucou P (2012) Expected future changes in the African monsoon between 2030 and 2070 using some CMIP3 and CMIP5 models under a medium-low RCP scenario. J Geophys Res 117:D16111. doi:10.1029/2012JD017510

    Article  Google Scholar 

  • Moufouma-Okia W, Jones R (2015) Resolution dependence in simulating the African hydroclimate with the HadGEM3-RA regional climate model. Clim Dyn 44(3–4):609–632

    Article  Google Scholar 

  • Music B, Caya D (2009) Investigation of the sensitivity of water cycle components simulated by the Canadian Regional Climate Model to the land surface parameterization, the lateral boundary data, and the internal variability. J Hydrometeorol 10(1):3–21

    Article  Google Scholar 

  • Nicholson SE (2009) A revised picture of the structure of the “monsoon” and land ITCZ over West Africa. Clim Dyn 32:1155–1171. doi:10.1007/s00382-008-0514-3

    Article  Google Scholar 

  • Nicholson SE (2013) The West Sahel: a review of recent studies on the rainfall regime and its interannual variability. Meteorology. doi:10.1155/2013/453521

    Google Scholar 

  • Nikulin G, Jones C, Samuelsson P, Giorgi F, Asrar G, Büchner M, Cerezo-Mota R, Christensen OB, Déqué M, Fernandez J, Hänsler A, van Meijgaard E, Sylla MB, Sushama L (2012) Precipitation climatology in an ensemble of CORDEX-Africa Regional Climate simulations. J Clim. doi:10.1175/JCLI-D-11-00375.1

    Google Scholar 

  • Oettli P et al (2011) Are regional climate models relevant for crop yield prediction in West Africa? Environ Res Lett 6(1):014008

    Article  Google Scholar 

  • Oki T, Musiake K, Matsuyama H, Masuda K (1995) Global atmospheric water balance and runoff from large river basins. Hydrol Process 9:655–678

    Article  Google Scholar 

  • Oleson K, Niu GY, Yang ZL, Lawrence DM, Thornton PE, Lawrence PJ, Stöckli R, Dickinson RE, Bonan GB, Levis S, Dai A, Qian T (2008) Improvements to the community land model and their impact on the hydrological cycle. J Geophys Res. doi:10.1029/2007JG000563

    Google Scholar 

  • Otieno VO, Anyah RO (2013) CMIP5 simulated climate conditions of the Greater Horn of Africa (GHA). Part II: projected climate. Clim Dyn. doi:10.1007/s00382-013-1694-z

    Google Scholar 

  • Paeth H, Hall NMJ, Gaertner MA, Alonso MD, Moumouni S, Polcher J, Ruti PM, Fink AH, Gosset M, Lebel T, Gaye AT, Rowell DP, Moufouma-Okia W, Jacob D, Rockel B, Giorgi F, Rummukainen M (2011) Progress in regional downscaling of West African precipitation. Atmos Sci Lett 12:75–82. doi:10.1002/asl.306

    Article  Google Scholar 

  • Pal JS, Small E, Eltahir E (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res 105:29579–29594

    Article  Google Scholar 

  • Pal and Coauthors (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Amer Meteor Soc 88:1395–1409

    Article  Google Scholar 

  • Panitz HJ, Dosio A, Büchner M, Lüthi D, Keuler K (2013) COSMO-CLM (CCLM) climate simulations over CORDEX-Africa domain: analysis of the ERA-interim driven simulations at 0.44° and 0.22° resolution. Clim Dyn. doi:10.1007/s00382-013-1834-5

    Google Scholar 

  • Peixoto JP, Oort AH (1992) Physics of climate. American Institute of Physic, New York, 520

    Google Scholar 

  • Prasanna V, Yasunari T (2011) Simulated changes in the atmospheric water balance over South Asia in the eight IPCC AR4 coupled climate models. Theor Appl Climatol 104(1–2):139–158

    Article  Google Scholar 

  • Rummukainen M (2010) State-of-the-art with regional climate models. Clim Change 1:82–96

    Google Scholar 

  • Ruti PM et al (2011) The West African climate system: a review of the AMMA model inter-comparison initiatives. Atmos Sci Lett 12:116–122

    Article  Google Scholar 

  • Saeed F, Haensler A, Weber T, Hangemann S, Jacob D (2013) Representation of extreme precipitation events leading to opposite climate change signals over the Congo Basin. Atmosphere 4:254–271. doi:10.3390/atmos4030254

    Article  Google Scholar 

  • Seneviratne SI, Viterbo P, Luthi D, Schar C (2004) Inferring changes in terrestrial water storage using ERA-40 reanalysis data: the Mississippi River Basin. J Clim 17:2039–2057

    Article  Google Scholar 

  • Seth A, Rauscher SA, Biasutti M, Giannini A, Camargo S, Rojas M (2013) CMIP5 Projected changes in the annual cycle of precipitation in monsoon regions. J Clim. doi:10.1175/JCLI-D-12-00726.1

    Google Scholar 

  • Siam MS, Demory ME, Eltahir EAB (2013) Hydrological cycle over the Congo and Upper Blue Nile Basins: evaluation of general circulation model simulations and reanalysis products. J Clim 26:8881–8894. doi:10.1175/JCLI-D-12-00404.1

    Article  Google Scholar 

  • Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013a) Climate extreme indices in the CMIP5 multimodel ensemble: part 1. Model evaluation in the present climate. J Geophys Res Atmos 118:1716–1733. doi:10.1002/jgrd.50203

    Article  Google Scholar 

  • Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013b) Climate extreme indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J Geophys Res Atmos 118:2473–2493. doi:10.1002/jgrd.50188

    Article  Google Scholar 

  • Steiner A, Pal JS, Rauscher S, Bell J, Diffenbaugh N, Boone A, Sloan L, Giorgi F (2009) Land surface coupling in regional climate simulations of the West African monsoon. Clim Dyn 33:869–892

    Article  Google Scholar 

  • Sylla MB, Gaye AT, Jenkins GS, Pal JS, Giorgi F (2010) Consistency of projected drought over the Sahel with changes in the monsoon circulation and extremes in a regional climate model projections. J Geophys Res 115:D16108. doi:10.1029/2009JD012983

    Article  Google Scholar 

  • Sylla MB, Gaye AT, Jenkins GS (2012) On the fine-scale topography regulating changes in atmospheric hydrological cycle and extreme rainfall over west africa in a regional climate model projections. Int J Geophys. doi:10.1155/2012/981649

    Google Scholar 

  • Sylla MB, Diallo I, Pal JS (2013a) West African monsoon in state-of-the-science regional climate models. Climate Variability: Regional and Thematic Patterns, A. Tarhule, (Ed) ISBN: 978-953-51-1187-0, InTech, 3–36. doi:10.5772/55140. Available from http://www.intechopen.com/books/climate-variability-regional-and-thematicpatterns/west-african-monsoon-in-state-of-the-science-regional-climate-models

  • Sylla MB, Giogi F, Coppola E, Mariotti L (2013b) Uncertainties in daily rainfall over Africa: assessment of gridded observation products and evaluation of a regional climate model simulation. Int J Climatol. doi:10.1002/joc.3551

    Google Scholar 

  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes. An intercomparison of model-simulated historical and future changes in extreme events. Clim Change 79:185–211. doi:10.1007/s10584-006-9051-4

    Article  Google Scholar 

  • Trenberth KE (1999) Atmospheric moisture recycling: role of advection and local evaporation. J Clim 12:1368–1381

    Article  Google Scholar 

  • Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138. doi:10.3354/cr00953

    Article  Google Scholar 

  • Van Den Hurk BJJM, Van Meijgaard E (2010) Diagnosing land-atmosphere interaction from a regional climate model simulation over West Africa. J Clim. doi:10.1175/2009JHM1173.1

    Google Scholar 

  • Van der Linden P, Mitchell JFB (2009) ENSEMBLES: climate change and its impact: summary of research and the results from the ENSEMBLES project. Met Office Hadley Centre, Exeter, p 160

    Google Scholar 

  • Vellinga M, Arribas A, Graham R (2013) Seasonal forecasts for regional onset of the West African monsoon. Clim Dyn. doi:10.1007/s00382-012-1520-z

    Google Scholar 

  • Vizy E, Cook K, Crétat J, Neupane N (2013) Projections of a Wetter Sahel in the twenty-first Century from global and regional models. J Clim. doi:10.1175/JCLI-D-12-00533.1

    Google Scholar 

  • Xue Y, De Sales F, Lau KMW, Bonne A, Feng J, Dirmeyer P, Guo Z, Kim KM, Kitoh A, Kumar V, Poccard-Leclercq I, Mahowald N, Moufouma-Okia W, Pegion P, Rowell DP, Schemm J, Schulbert S, Sealy A, Thiaw WM, Vintzileos A, Williams SF, Wu ML (2010) Intercomparison of West African Monsoon and its variability in the West African Monsoon Modelling Evaluation Project (WAMME) first model Intercomparison experiment. Clim Dyn 35:3–27. doi:10.1007/s00382-010-0778-2

    Article  Google Scholar 

  • Zaroug MAH, Sylla MB, Giorgi F, Eltahir EAB, Aggarwal PK (2013) A sensitivity study on the role of the swamps of southern Sudan in the summer climate of North Africa using a regional climate model. Theor Appl Climatol 113:63–81. doi:10.1007/s00704-012-0751-6

    Article  Google Scholar 

  • Zeng X, Zhao M, Dickinson RE (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Clim 11:2628–2644

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the United States Agency for International Development (USAID) through Partnerships for Enhanced Engagement in Research (PEER Project 2–344) and the Earth System Physics (ESP) section of the Abdus Salam ICTP (Trieste, Italy). Support from the U.S. National Science Foundation grants AGS-1419526 is gratefully acknowledged. The authors gratefully acknowledge Dr. Mouhamadou Bamba Sylla of WASCAL and Dr. Mamadou Simina Dramé of UCAD/LPAO-SF for their invaluable scientific and technical support. We are also grateful to the anonymous reviewers whose comments have improved the quality of this paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismaïla Diallo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diallo, I., Giorgi, F., Deme, A. et al. Projected changes of summer monsoon extremes and hydroclimatic regimes over West Africa for the twenty-first century. Clim Dyn 47, 3931–3954 (2016). https://doi.org/10.1007/s00382-016-3052-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3052-4

Keywords

Navigation