Skip to main content

Advertisement

Log in

Interactions between aerosol absorption, thermodynamics, dynamics, and microphysics and their impacts on a multiple-cloud system

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study investigates how the increasing concentration of black carbon aerosols, which act as radiation absorbers as well as agents for the cloud-particle nucleation, affects stability, dynamics and microphysics in a multiple-cloud system using simulations. Simulations show that despite increases in stability due to increasing concentrations of black carbon aerosols, there are increases in the averaged updraft mass fluxes (over the whole simulation domain and period). This is because aerosol-enhanced evaporative cooling intensifies convergence near the surface. This increase in the intensity of convergence induces an increase in the frequency of updrafts with the low range of speeds, leading to the increase in the averaged updraft mass fluxes. The increase in the frequency of updrafts induces that in the number of condensation entities and this leads to more condensation and cloud liquid that acts to be a source of the accretion of cloud liquid by precipitation. Hence, eventually, there is more accretion that offsets suppressed autoconversion, which results in negligible changes in cumulative precipitation as aerosol concentrations increase. The increase in the frequency of updrafts with the low range of speeds alters the cloud-system organization (represented by cloud-depth spatiotemporal distributions and cloud-cell population) by supporting more low-depth clouds. The altered organization in turn alters precipitation spatiotemporal distributions by generating more weak precipitation events. Aerosol-induced reduction in solar radiation that reaches the surface induces more occurrences of small-value surface heat fluxes, which in turn supports the more low-depth clouds and weak precipitation together with the greater occurrence of low-speed updrafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Allen G, Vaughan G, Bower KN et al (2008) Aerosol and trace-gas measurement in the Darwin area during the wet season. J Geophys Res 113:D06306, doi:10.1029/2007JD008706

    Google Scholar 

  • Andreae MO et al (2004) Smoking rain clouds over the amazon. Science 303:1337–1341

    Article  Google Scholar 

  • Baker MB, Charlson RJ (1990) Bistability of CCN concentrations and thermodynamics in the cloud-topped boundary layer. Nature 345:142–145

    Article  Google Scholar 

  • Byers HR, Braham RR (1949) The thunderstorms. U.S. Govt. Printing Office, Washington, p 287

    Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land-surface hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model description and implementation. Mon Wea Rev 129:569–585

    Article  Google Scholar 

  • Feingold G, Kreidenweis SM (2002) Cloud processing of aerosol as modeled by a large eddy simulation with coupled microphysics and aqueous chemistry. J Geophys Res 107:4687. doi:10.1029/2002JD002054

    Article  Google Scholar 

  • Feingold G, Jiang H, Harrington JY (2005) On smoke suppression of clouds in Amazonia. Geophys Res Lett 32:L02804. doi:10.1029/2004GL021369

    Article  Google Scholar 

  • Fouquart Y, Bonnel B (1980) Computations of solar heating of the Earth’s atmosphere: a new parameterization. Beitr Phys Atmos 53:35–62

    Google Scholar 

  • Fridlind A et al (2010) ARM/GCSS/SPARC TWP-ICE CRM intercomparison study, available at http://pubs.giss.nasa.gov/abs/fr08100v.html

  • Fridlind AM et al (2012) A comparison of TWP-ICE observational data with cloud-resolving model results. J Geophys Res 117:D05204. doi:10.1029/2011JD016595

    Article  Google Scholar 

  • Grenci LM, Nese JM (2001) A world of weather: fundamentals of meteorology: a text/ laboratory manual, Kendall/Hunt Publishing Company, USA

    Google Scholar 

  • Heylighen F (2002) The science of self-organization and adaptivity, knowledge management, organizational intelligence and learning and complexity (ed. Kiel LD) in encyclopedia of life support systems 1–26, available via http://www.eolss.net, Eolss Publishers, Oxford

  • Houze RA (1993) Cloud dynamics, Academic Press, London, p 573

    Google Scholar 

  • Jacobson MZ (2006) Effects of externally-through-internally-mixed soot inclusions within clouds and precipitation on global climate. J Phys Chem A 110:6860–6873

    Article  Google Scholar 

  • Jacobson MZ (2012) Investigating cloud absorption effects: Global absorption properties of black carbon, tar balls, and soil dust in clouds and aerosols. J Geophys Res 117:D06205. doi:10.1029/2011JD017218

    Article  Google Scholar 

  • Lau WK-M, Ramanathan V, Wu G-X, Li Z, Tray SC, Hsu C, Sikka R, Holben B, Lu D, Tartari G, Chin M, Koudelova P, Chen H, Ma Y, Huang J, Taniguchi K, Zhang R (2008) The joint aerosol–monsoon experiment: a new challenge for monsoon climate research. Bull Amer Meteorol Soc 89:369–383

    Article  Google Scholar 

  • Lee SS (2011a) Aerosols, clouds and climate. Nat Geosci 4:826–827

    Article  Google Scholar 

  • Lee SS (2011b) Dependence of aerosol-precipitation interactions on humidity in a multiple-cloud system. Atmos Chem Phys 11:2179–2196

    Article  Google Scholar 

  • Lee SS, Feingold G (2013) Aerosol effects on the cloud-field properties of tropical convective clouds. Atmos Chem Phys 13:6713–6726

    Article  Google Scholar 

  • Lee SS, Donner LJ, Phillips VTJ, Ming Y (2008a) The dependence of aerosol effects on clouds and precipitation on cloud-system organization, shear and stability. J Geophys Res 113:D16202. doi:10.1029/2007JD009224

  • Lee SS, Donner LJ, Phillips VTJ, Ming Y (2008b) Examination of aerosol effects on precipitation in deep convective clouds during the 1997 ARM summer experiment. Q J R Meteorol Soc 134:1201–1220. doi:10.1002/qj.287

    Article  Google Scholar 

  • Lee SS, Donner LJ, Penner JE (2010) Thunderstorm and stratocumulus: how does their contrasting morphology affect their interactions with aerosols?. Atmos Chem. Phys 10:6819–6837. doi:10.5194/acp-10-6819-2010

    Article  Google Scholar 

  • Lee SS, Feingold G, Koren I et al (2014a) Effect of gradients in biomass burning aerosol on circulations and clouds. J Geophys Res 119:9948–9964

    Google Scholar 

  • Lee SS, Tao W-K, Jung CH (2014b) Aerosol effects on instability, circulations, clouds and precipitation. Adv Meteorol 2014:683950

  • Meyers MP, Walko RL, Harrington JY, Cotton WR (1997) New RAMS cloud microphysics parameterization. Part II. The two-moment scheme. Atmos Res 45:3–39

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16663–16682

    Article  Google Scholar 

  • Morrison H, de Boer G, Feingold G et al (2012) Resilience of persistent Arctic mixed-phase clouds. Nat Geosci 5:11–17. doi:10.1038/ngeo1332

    Article  Google Scholar 

  • Qian Y, Gong D, Fan J, Leung LR, Bennartz R, Chen D, Wang W (2009) Heavy pollutions suppresses light rain in China: observations and modelling. J Geophys Res 114:D00K02. doi:10.1029/2008JD011575

    Article  Google Scholar 

  • Ramana MV, Ramanathan V, Feng Y, Yoon S-C, Kim S-W, Carmichael GR, Schauer JJ (2010) Warming influenced by the ratio of black carbon to sulphate and the black-carbon source. Nat Geosci 3:542–545

    Article  Google Scholar 

  • Ramanathan V, Crutzen PJ, Lelieveld J, Mitra AP, Althausen D, erson J et al (2001) Indian ocean experiment: an integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J Geophys Res 106:28371–28398

    Article  Google Scholar 

  • Rosenfeld D (1999) TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys Res Lett 26:3105–3108

    Article  Google Scholar 

  • Saleeby SM, Cotton WR (2004) A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado state university regional atmospheric modeling system (RAMS). Part I: module description and supercell test simulations. J Appl Meteor 43:182–195

    Article  Google Scholar 

  • Saleeby SM, Cotton WR (2008) A binned approach to cloud droplet riming implement in a bulk microphysics model. J Appl Meteor Climatol 47:694–703

    Article  Google Scholar 

  • Segal M, Arritt RW (1992) Nonclassical mesoscale circulations caused by surface heat flux gradients. Bull Amer Meteor Soc 1593–1604

  • Storer RL, van den Heever SC, Stephens GL (2010) Modeling aerosol impacts on convection under differing storm environments. J Atmos Sci 67:3904–3915

    Article  Google Scholar 

  • Tao W-K, Chen J-P, Li Z, Wang C, Zhang C (2012) Impact of aerosols on convective clouds and precipitation. Rev Geophys 50:RG2001. doi:10.1029/2011RG000369

    Article  Google Scholar 

  • Ten Hoeve JE, Jacobson MZ, Remer LA (2012) Comparing results from a physical model with satellite and in situ observations to determine whether biomass burning aerosols over the Amazon brighten or burn off clouds. J Geophys Res 117:D08203. doi:10.1029/2011JD016856

    Article  Google Scholar 

  • Vaughan G et al (2008) SCOUT-O3/ACTIVE: High-altitude aircraft measurements around deep tropical convection. Bull Amer Meteorol Soc 89:647–662

    Article  Google Scholar 

  • Walko RL, Cotton WR, Meyers MP, Harrington JY (1995) New RAMS cloud microphysics parameterization: Part I. The single-moment scheme. Atmos Res 38:29–62

    Article  Google Scholar 

  • Wang C (2009) The sensitivity of tropical convective precipitation to the direct radiative forcings of black carbon aerosols emitted from major regions. Ann Geophys 27:3705–3711

    Article  Google Scholar 

  • Wang C (2013) Impact of anthropogenic absorbing aerosols on clouds and precipitation: a review of recent progresses. Atmos Res 122:237–249

    Article  Google Scholar 

  • Wang H, Skamarock WC, Feingold G (2009) Evaluation of scalar advection schemes in the Advanced Research WRF model using large-eddy simulations of aerosol-cloud interactions. Mon Wea Rev 137:2547–2558

    Article  Google Scholar 

  • Zhu P et al (2012) A limited area model (LAM) intercomparison study of a TWP-ICE active monsoon mesoscale convective event. J Geophys Res 117:D11208. doi:10.1029/2011JD016447

    Google Scholar 

Download references

Acknowledgements

This study is supported by the National Science Foundation (NSF) (grants AGS1118325 and AGS1534670), the National Oceanic and Atmospheric Administration (NOAA) (grant NOAA-NWS-NWSPO-2015-2004117), Korea Environmental Industry and Technology Institute funded by the Korea Ministry of Environment as “Climate Change Correspondence Program”, and NIER2016-29: Extension of GEMS Product.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seoung Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.S., Li, Z., Mok, J. et al. Interactions between aerosol absorption, thermodynamics, dynamics, and microphysics and their impacts on a multiple-cloud system. Clim Dyn 49, 3905–3921 (2017). https://doi.org/10.1007/s00382-017-3552-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3552-x

Keywords

Navigation