Skip to main content

Advertisement

Log in

WRF/ARPEGE-CLIMAT simulated climate trends over West Africa

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Weather Regional Forecast (WRF) model is used in this study to downscale low-resolution data over West Africa. First, the performance of the regional model is estimated through contemporary period experiments (1981–1990) forced by ARPEGE-CLIMAT GCM output (ARPEGE) and ERA-40 re-analyses. Key features of the West African monsoon circulation are reasonably well represented. WRF atmospheric dynamics and summer rainfall compare better to observations than ARPEGE forcing data. WRF simulated moisture transport over West Africa is also consistent in both structure and variability with re-analyses, emphasizing the substantial role played by the West African Monsoon (WAM) and African Easterly Jet (AEJ) flows. The statistical significance of potential climate changes for the A2 scenario between 2032 and 2041 is enhanced in the downscaling from ARPEGE by the regional experiments, with substantial rainfall increases over the Guinea Gulf and eastern Sahel. Future scenario WRF simulations are characterized by higher temperatures over the eastern Tropical Atlantic suggesting more evaporation available locally. This leads to increased moisture advection towards eastern regions of the Guinea Gulf where rainfall is enhanced through a strengthened WAM flow, supporting surface moisture convergence over West Africa. Warmer conditions over both the Mediterranean region and northeastern Sahel could also participate in enhancing moisture transport within the AEJ. The strengthening of the thermal gradient between the Sahara and Guinean regions, particularly pronounced north of 10°N, would support an intensification of the AEJ northwards, given the dependance of the jet to the position/intensity of the meridional gradient. In turn, mid-tropospheric moisture divergence tends to be favored within the AEJ region supporting southwards deflection of moist air and contributing to deep moist convection over the Sahel where late summer rainfall regimes are sustained in the context of the A2 scenario regional projections. In conclusion, WRF proved to be a valuable and efficient tool to help downscaling GCM projections over West Africa, and thus assessing issues such as water resources vulnerability locally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Adler R, Huffman G, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeor 4:1147–1167

    Article  Google Scholar 

  • Alexander M, Schubert S (1990) Regional earth-atmosphere energy balance estimates based on assimilations with a GCM. J Clim 3:15–31

    Article  Google Scholar 

  • Biasutti M, Giannini A (2006) Robust Sahel drying in response to late 20th century forcings. Geophys Res Lett 33. doi: 10.1029/2006GL026067

  • Cadet D, Nnoli N (1987) Water vapour transport over West Africa and the Atlantic Ocean during summer 1979. Quart J Roy Met Soc 113:581–602

    Article  Google Scholar 

  • Caminade C, Terray P (2009) Twentieth century Sahel rainfall variability as simulated by the ARPEGE AGCM, and future changes. Clim Dyn. doi: 10.1007/s00382-009-0545-4

  • Castro C, Pielke R, Leoncini G (2005) Dynamical downscaling: assessment of value retained and added using Regional Atmospheric Modeling System (RAMS). J Geophys Res 110. doi: 10.1029/2004JDO04721

  • Cook K (1998), Generation of the African Easterly Jet and its role in determining West African precipitation. J Clim 12:1165–1184

    Article  Google Scholar 

  • Déqué M (1999) Documentation ARPEGE-CLIMAT. Tech. report, Centre de National de Recherche Météorologiques. Météo-France, Toulouse, France

  • Déqué M, Devreton C, Braun A, Cariolle D (1994) The climate version of the ARPEGE-IFS: a contribution of the French community climate modeling. Clim Dyn 10:249–266

    Article  Google Scholar 

  • d’Orgeval T, Polcher J, Li L (2006) Uncertainties in modelling future hydrological change over West Africa. Clim Dyn 26:93–108

    Article  Google Scholar 

  • Douville H, Mélia DS, Tyteca S (2006) On the origin of uncertainties in the global land precipitation response to global warming. Clim Dyn 26:367–385

    Article  Google Scholar 

  • Fall S, Semazzi F, Dutta SND, Anyah R, Bowden J (2006) The spatiotemporal climate variability over senegal and its relationship to global climate change. Int J Climatol 26:2057–2076

    Article  Google Scholar 

  • Fontaine B, Janicot S (1992) Wind-filed coherence and its variations over West Africa. J Clim 5:512–524

    Article  Google Scholar 

  • Fontaine B, Janicot S, Moron V (1995) Rainfall anomaly patterns and wind field signals over West Africa in August (1958–1989). J Clim 8:1503–1510

    Article  Google Scholar 

  • Fontaine B, Roucou P, Trzaska S (2003) Atmospheric water cycle and moisture fluxes in the West African monsoon: mean annual cycles and relationship using NCEP/NCAR reanalysis. Geophys Res Lett 30:11–17

    Article  Google Scholar 

  • Fontaine B, Louvet S, Roucou P (2008) Definition and predictability of an OLR-based West African monsoon onset. Int J Climatol 28:1787–1798

    Article  Google Scholar 

  • Gong C, Eltahir E (1996) Sources of moisture for rainfall in West Africa. Wat Resour Res 32:3115–3121

    Article  Google Scholar 

  • Hastenrath S, Lamb P (1977) Some aspects of circulation and climate over the eastern equatorial Atlantic. Mon Wea Rev 105:1019–1023

    Article  Google Scholar 

  • Janicot S (1992) Spatio-temporal variability of West African rainfall. Part I: Regionalization and typings. J Clim 5:489–497

    Article  Google Scholar 

  • Janowiak J (1988) An investigation of interannual rainfall variability in Africa. J Clim 1:240–255

    Article  Google Scholar 

  • Joly M, Voldoire A, Douville H, Terray P, Royer J (2007) African monsoon teleconnections with tropical SSTs: validation and evolution from a set of IPCC4 simulations. Clim Dyn 29:1–20

    Article  Google Scholar 

  • Kanamaru H, Salvucci G (2003) Adjustments for wind sampling errors in an estimate of the atmospheric water budget of the mississipi river basin. J Hydrometeor 4:518–529

    Article  Google Scholar 

  • Lamb PJ (1983) West African water vapor variations between recent contrasting Subsaharan rainy season. Tellus 35:198–212

    Google Scholar 

  • Lamb PJ (1985) Rainfall in subsaharan West Africa during 1941–83. Z Gletscherk Glazialgeol 21:131–139

    Google Scholar 

  • Le Barbé L, Lebel T (1989) Analysis of regional precipitation patterns in West Africa based on the low of leaks. In: 4th AMS International meeting on statistical climatology

  • Le Barbé L, Lebel T, Tapsoba D (2002) Rainfall variability in West Africa during the years 1950–1990. J Clim 15:187–202

    Article  Google Scholar 

  • Lo J-F, Yang Z, Pielke R (2008) Assessment of three dynamical climate downscaling methods using the Weather Regional Forecasting (WRF) model. J Geophys Res 113. doi: 10.1029/2007JD009216

  • Maynard K, Royer J, Chauvin F (2002) Impact of greenhouse warming on the West African summer monsoon. Clim Dyn 19:499–514

    Article  Google Scholar 

  • Nakicenovic N, Davidson O, Davis G, Grübler A, Kram T, Rovere ELL, Metz B, Morita T, Pepper W, Pitcher H, Sankovski A, Shukla P, Swart R, Watson R, Dadi Z (eds) (2000) Special report on emissions scenarios: a special report of working group III of the intergovernmental panel on climate change. Cambridge University Press, 599 pp

  • Nicholson SE (1986) The spatial coherence of rainfall anomalies: interhemispheric teleconnections. J Clim Appl Meteor 25:1365–1381

    Article  Google Scholar 

  • Peters M, Tetzlaff G (1988) The structure of West African squall lines and their environmental moisture budget. Meteor Atmos Phys 39:74–84

    Article  Google Scholar 

  • Philippon N (2007) Previsions des cumuls saisonniers de precipitations Juillet-Aout-Septembre au Sahel pour 2007. In: AMMA W.P.1.1.3. Proceedings, pp 1–7

  • Ramel R, Gallée H, Messager C (2006) On the northward shift of the West African monsoon. Clim Dyn 26:429–440

    Article  Google Scholar 

  • Rockel B, Castro C, Pielke R, von Storch H, Leoncini G (2008) Dynamical downscaling: assessment of model system dependant retained and added variability for two different regional climate models. J Geophys Res. doi: 10.1029/2007JD0099461

  • Rowell D, Folland C, Maskell K, Owen J, Ward M (1992) Modelling the influence of global sea surface temperatures on the variability and predictability of seasonal Sahelian rainfall. Geophys Res Lett 19:905–908

    Article  Google Scholar 

  • Semenov M, Brooks R, Barrow E, Richardson C (1998) Comparison of the WGEN and LARS-WG stochastic weather generators in diverse climates. Clim Res 10:95–107

    Article  Google Scholar 

  • Shamarock W, Klemp J, Dudhia J, Gill D, Barker M, Wang W, Powers J (2005) A description of the advanced research WRF version 2. NCAR technical note, NCAR/TN-468+(STR)

  • Sijikumar S, Roucou P, Fontaine B (2006) Monsoon onset over Sudan-Sahel: simulations by regional scale model MM5. Geophys Res Lett 33. doi: 10.1029/2005GL024819

  • Sultan B, Janicot S (2000) Abrupt shift of the ITCZ over West Africa and intra-seasonal variability. Geophys Res Lett 27:3353–3356

    Article  Google Scholar 

  • Sultan B, Janicot S (2003) The West African Monsoon dynamics. Part II: the preonset and onset of the summer monsoon. J Clim 16:3407–3427

    Article  Google Scholar 

  • Trenberth K (1991) Climate diagnostics from global analyses: conservation of mass in ECMWF analyses. J Clim 4:707–722

    Article  Google Scholar 

  • Trenberth K (1997) Using atmospheric budgets as a constraint on surface fluxes. J Clim 10:2796–2809

    Article  Google Scholar 

  • Vigaud N, Richard Y, Rouault M, Fauchereau N (2007) Water vapour from the tropical atlantic and summer rainfall in tropical southern africa. Clim Dyn. doi: 10.1007/s00382-006-0186-9

  • Vrac M, Stein M, Hayhoe K (2007) Statistical downscaling of precipitation through nonhomogeneous stochastic weather typing. Clim Res 34:169–184. doi: 10.3354/cr00696

    Google Scholar 

  • Wilks D, Wilby R (1999) The weather generation game: a review of stochastic weather model. Prog Phys Geogr 23:329–357

    Google Scholar 

  • Xie P, Arkin P (1996) Analysis of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J Clim 9:840–858

    Article  Google Scholar 

  • Xie P, Arkin P (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Amer Meteor Soc 78:2539–2558

    Article  Google Scholar 

Download references

Acknowledgments

The authors are most thankful to the anonymous reviewers for their constructive suggestions and substantial contribution to the paper. N. Vigaud would like to acknowledge the financial support of the RESSAC (Vulnérabilité des Ressources en Eau Superficielle au Sahel aux Evolutions Anthropiques et Climatiques à moyen terme) program from the Agence Nationale pour la Recherche (ANR-06-VULN-017-02). This study was supported by the European Commission 6th Framework Program (ENSEMBLES, contract GOCE-CT-2003-505539). Regional experiments were performed using HPC ressources from GENCI-[CCRT/CINES/IDRIS] (Grant 2009-91320). ECMWF ERA-40 re-analyses used in this study were obtained from the ECMWF data server, IRD in situ daily precipitation data, CMAP and GPCP rainfall from the referring institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vigaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vigaud, N., Roucou, P., Fontaine, B. et al. WRF/ARPEGE-CLIMAT simulated climate trends over West Africa. Clim Dyn 36, 925–944 (2011). https://doi.org/10.1007/s00382-009-0707-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-009-0707-4

Keywords

Navigation