Skip to main content

Advertisement

Log in

MR imaging of brain pilocytic astrocytoma: beyond the stereotype of benign astrocytoma

  • Review Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Background

Pilocytic astrocytoma (PA) is the most common pediatric brain glioma and is considered the prototype of benign circumscribed astrocytoma. Despite its low malignancy, the CT and MRI features of brain PA may resemble those of much more aggressive brain tumors. Misdiagnosis of PA is particularly easy when it demonstrates MR morphological and non-morphological findings that are inconsistent with its non-aggressive nature and that overlap with the features of more aggressive brain tumors.

Method

Basing on the evidence that the variation in the histological, genetic, and metabolic “fingerprint” for brain PA is dependent on tumor location, and the hypothesis that tumor location is related to the broad spectrum of morphological and non-morphological MR imaging findings, the authors discuss the MR imaging appearance of brain PA using a location-based approach to underline the typical and less typical imaging features and the main differential diagnosis of brain PA. A brief summary of the main pathological and clinical features, the natural history, and the treatment of brain PA is also provided.

Result

A combination of morphological and non-morphological MR imaging features and a site-based approach to differential diagnosis are required for a pre-operative diagnosis. The new “cutting-edge” MR imaging sequences have the potential to impact the ease and confidence of pediatric brain tumor interpretation and offer a more efficient diagnostic work-up.

Conclusions

Although the typical imaging features of brain pilocytic astrocytoma make radiological diagnosis relatively easy, an atypical and more aggressive appearance can lead to misdiagnosis. Knowing the broad spectrum of imaging characteristics on conventional and advanced MR imaging is important for accurate pre-operative radiological diagnosis and correctly interpreting changes during follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Ostrom QT, Gittleman H, Fulop J et al (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro-Oncology 17(Suppl 4):1–62

    Article  Google Scholar 

  2. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (2016) WHO classification of tumours of the central nervous system. WHO/IARC classification of tumours, 4th edn. Revised, volume 1. International Agency for Research on Cancer, Lyon, France

    Google Scholar 

  3. Reis GF, Bloomer MM, Perry A et al (2013) Pilocytic astrocytomas of the optic nerve and their relation to pilocytic astrocytomas elsewhere in the central nervous system. Mod Pathol 26:1279–1287

    Article  CAS  PubMed  Google Scholar 

  4. Shapey J, Danesh-Meyer HV, Kaye AH (2011) Diagnosis and management of optic nerve glioma. J Clin Neurosci 18:1585–1591

    Article  CAS  PubMed  Google Scholar 

  5. Listernick R, Ferner RE, Liu GT, Gutmann DH (2007) Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations. Ann Neurol 61:189–198

    Article  CAS  PubMed  Google Scholar 

  6. Collins VP, Jones DT, Giannini C (2015) Pilocytic astrocytoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129:775–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brat DJ, Perry A (2010) Chapter 5: Astrocytic and oligodendroglial tumors. In: Perry A, Brat DJ (eds) Practical surgical neuropathology: a diagnostic approach. Churchill Livingstone Elsevier, Philadelphia, pp. 63–101

    Chapter  Google Scholar 

  8. Rodriguez FJ, Scheithauer BW, Burger PC, Jenkins S, Giannini C (2010) Anaplasia in pilocytic astrocytoma predicts aggressive behavior. Am J Surg Pathol 34:147–160

    Article  PubMed  Google Scholar 

  9. Sadighi Z, Slopis J (2013) Pilocytic astrocytoma: a disease with evolving molecular heterogeneity. J Child Neurol 28:625–632

    Article  PubMed  Google Scholar 

  10. Sharma MK, Mansur DB, Reifenberger G et al (2007) Distinct genetic signatures among pilocytic astrocytomas relate to their brain region origin. Cancer Res 67:890–900

    Article  CAS  PubMed  Google Scholar 

  11. Rodriguez EF, Scheithauer BW, Giannini C et al (2011) PI3K/AKT pathway alterations are associated with clinically aggressive and histologically anaplastic subsets of pilocytic astrocytoma. Acta Neuropathol 121:407–420

    Article  CAS  PubMed  Google Scholar 

  12. Korshunov A, Meyer J, Capper D et al (2009) Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathol 118:401–405

    Article  CAS  PubMed  Google Scholar 

  13. Sridhar K, Sridhar R, Venkatprasanna G (2011) Management of posterior fossa gliomas in children. J Pediatr Neurosci 6(Suppl 1):72–77

    Article  Google Scholar 

  14. Koeller KK, Rushing EJ (2004) From the archives of the AFIP: pilocytic astrocytoma: radiologic-pathologic correlation. Radiographics 24:1693–1708

    Article  PubMed  Google Scholar 

  15. Abdollahzadeh M, Hoffman HJ, Blazer SI et al (1994) Benign cerebellar astrocytoma in childhood: experience at the Hospital for Sick Children 1980–1992. Childs Nerv Syst 10:380–383

    Article  CAS  PubMed  Google Scholar 

  16. Bandopadhayay P, Bergthold G, London WB et al (2014) Long-term outcome of 4,040 children diagnosed with pediatric low-grade gliomas: an analysis of the Surveillance Epidemiology and End Results (SEER) database. Pediatr Blood Cancer 61:1173–1179

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kerrison JB (2005) Chapter 38: Phacomatoses. In: Miller NR (ed) Walsh & Hoyt’s clinical neuro-ophthalmology, 6th edn. Lippincott Williams & Wilkins, Philadelphia, pp. 1823–1898

    Google Scholar 

  18. Lee AG (2007) Neuroophthalmological management of optic pathway gliomas. Neurosurg Focus 23:E1

    Article  PubMed  Google Scholar 

  19. Pollack IF, Hoffman HJ, Humphreys RP, Becker L (1993) The long-term outcome after surgical treatment of dorsally exophytic brain-stem gliomas. J Neurosurg 78:859–863

    Article  CAS  PubMed  Google Scholar 

  20. Gaudino S, Quaglio F, Schiarelli C et al (2012) Spontaneous modifications of contrast enhancement in childhood non-cerebellar pilocytic astrocytomas. Neuroradiology 54:989–995

    Article  PubMed  Google Scholar 

  21. Fisher PG, Tihan T, Goldthwaite PT et al (2008) Outcome analysis of childhood low-grade astrocytomas. Pediatr Blood Cancer 51:245–250

    Article  PubMed  Google Scholar 

  22. International Consortium on Low Grade Glioma of the International Society of Pediatric Oncology (ICLGG-SIOP). Cooperative multicenter study for children and adolescents with low grade glioma. Version I, April 2004

  23. Packer RJ, Ater J, Allen J et al (1997) Carboplatin and vincristine chemotherapy for children with newly diagnosed progressive low-grade gliomas. J Neurosurg 86:747–754

    Article  CAS  PubMed  Google Scholar 

  24. Packer RJ, Lange B, Ater J et al (1993) Carboplatin and vincristine for recurrent and newly diagnosed low-grade gliomas of childhood. J Clin Oncol 11:850–856

    CAS  PubMed  Google Scholar 

  25. Shamji MF, Benoit BG (2007) Syndromic and sporadic pediatric optic pathway gliomas: review of clinical and histopathological differences and treatment implications. Neurosurg Focus 23:E3

    Article  PubMed  Google Scholar 

  26. Pettorini BL, Park YS, Caldarelli M, Massimi L, Tamburrini G, Di Rocco C (2008) Radiation-induced brain tumours after central nervous system irradiation in childhood: a review. Childs Nerv Syst 24:793–805

    Article  PubMed  Google Scholar 

  27. Adesina AM, Fuller CE, Rocke-Adams L (2010) Case studies. In: Adesina AM, Tihan T, Fuller CE, Poussaint TY (eds) Atlas of pediatric brain tumors. Springer, New York, pp. 319–336

    Chapter  Google Scholar 

  28. Lee YY, Van Tassel P, Bruner JM, Moser RP, Share JC (1989) Juvenile pilocytic astrocytomas: CT and MR characteristics. AJR Am J Roentgenol 152:1263–1270

    Article  CAS  PubMed  Google Scholar 

  29. Coakley KJ, Huston J 3rd, Scheithauer BW, Forbes G, Kelly PJ (1995) Pilocytic astrocytomas: welldemarcated magnetic resonance appearance despite frequent infiltration histologically. Mayo Clin Proc 70:747–751

    Article  CAS  PubMed  Google Scholar 

  30. Shibao S, Kimura T, Sasaki H et al (2012) Hemorrhagic onset of cerebellar pilocytic astrocytoma in an adult: a case report and review of the literature implying a possible relation of degenerative vascular changes to the massive intratumoral hemorrhage. Brain Tumor Pathol 29:96–102

    Article  PubMed  Google Scholar 

  31. Sato K, Rorke LB (1989) Vascular bundles and wickerworks in childhood brain tumors. Pediatr Neurosci 15:105–110

    Article  CAS  PubMed  Google Scholar 

  32. Grand SD, Kremer S, Tropres IM et al (2007) Perfusion-sensitive MRI of pilocytic astrocytomas: initial results. Neuroradiology 49:545–550

    Article  PubMed  Google Scholar 

  33. Kornreich L, Blaser S, Schwarz M et al (2001) Optic pathway glioma: correlation of imaging findings with the presence of neurofibromatosis. AJNR Am J Neuroradiol 22:1963–1969

    CAS  PubMed  Google Scholar 

  34. Faria AV, Azevedo GC, Zanardi VA, Ghizoni E, Queiroz LS (2006) Dissemination patterns of pilocytic astrocytoma. Clin Neurol Neurosurg 108:568–572

    Article  PubMed  Google Scholar 

  35. Hukin J, Siffert J, Cohen H, Velasquez L, Zagzag D, Allen J (2003) Leptomeningeal dissemination at diagnosis of pediatric low-grade neuroepithelial tumors. NeuroOncol 5:188–196

    Google Scholar 

  36. Hukin J, Siffert J, Velasquez L, Zagzag D, Allen J (2002) Leptomeningeal dissemination in children with progressive low-grade neuroepithelial tumors. Neuro-Oncology 4:253–260

    PubMed  PubMed Central  Google Scholar 

  37. Mazloom A, Hodges JC, Teh BS, Chintagumpala M, Paulino AC (2012) Outcome of patients with pilocytic astrocytoma and leptomeningeal dissemination. Int J Radiat Oncol Biol Phys 84:350–354

    Article  PubMed  Google Scholar 

  38. Bull JG, Saunders DE, Clark CA (2012) Discrimination of paediatric brain tumours using appar3nt diffusion coefficient histograms. Eur Radiol 22:447–457

    Article  PubMed  Google Scholar 

  39. Rossi A, Gandolfo C, Morana G, Severino M, Garrè ML, Cama A (2010) New MR sequences (diffusion, perfusion, spectroscopy) in brain tumours. Pediatr Radiol 40:999–1009

    Article  PubMed  Google Scholar 

  40. Bulakbasi N, Kocaoglu M, Farzaliyev A, Tayfun C, Ucoz T, Somuncu I (2005) Assessment of diagnostic accuracy of perfusion MR imaging in primary and metastatic solitary malignant brain tumors. AJNR Am J Neuroradiol 26:2187–2199

    PubMed  Google Scholar 

  41. Sugahara T, Korogi Y, Kochi M et al (1998) Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol 171:1479–1486

    Article  CAS  PubMed  Google Scholar 

  42. Uematsu H, Maeda M, Sadato N et al (2002) Measurement of the vascularity and vascular leakage of gliomas by double-echo dynamic magnetic resonance imaging: a preliminary study. Investig Radiol 37:571–576

    Article  Google Scholar 

  43. Mangla R, Kolar B, Zhu T, Zhong J, Almast J, Ekholm S (2011) Percentage signal recovery derived from MR dynamic susceptibility contrast imaging is useful to differentiate common enhancing malignant lesions of the brain. AJNR Am J Neuroradiol 32:1004–1010

    Article  CAS  PubMed  Google Scholar 

  44. Porto L, Kieslich M, Franz K et al (2010) Spectroscopy of untreated pilocytic astrocytomas: do children and adults share some metabolic features in addition to their morphologic similarities? Childs Nerv Syst 26:801–806

    Article  PubMed  Google Scholar 

  45. Hwang JH, Egnaczyk GF, Ballard E, Dunn RS, Holland SK, Ball WS Jr (1998) Proton MR spectroscopic characteristics of pediatric pilocytic astrocytomas. AJNR Am J Neuroradiol 19:535–540

    CAS  PubMed  Google Scholar 

  46. Davies NP, Wilson M, Harris LM et al (2008) Identification and characterisation of childhood cerebellar tumours by in vivo proton MRS. NMR Biomed 21:908–918

    Article  CAS  PubMed  Google Scholar 

  47. Harris LM, Davies NP, Macpherson L et al (2008) Magnetic resonance spectroscopy in the assessment of pilocytic astrocytomas. Eur J Cancer 44:2640–2647

    Article  PubMed  Google Scholar 

  48. Horská A, Barker PB (2010) Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin N Am 20:293–310

    Article  PubMed  PubMed Central  Google Scholar 

  49. Oz G, Alger JR, Barker PB et al (2014) Clinical proton MR spectroscopy in central nervous system disorders. Radiology 270:658–679

    Article  PubMed  PubMed Central  Google Scholar 

  50. Howe FA, Barton SJ, Cudlip SA et al (2003) Metabolic profiles ofhuman brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 49:223–232

    Article  CAS  PubMed  Google Scholar 

  51. Hakyemez B, Erdogan C, Bolca N, Yildirim N, Gokalp G, Parlak M (2006) Evaluation of different cerebral mass lesions by perfusion-weighted MR imaging. J Magn Reson Imaging 24:817–824

    Article  PubMed  Google Scholar 

  52. Poretti A, Meoded A, Huisman TA (2012) Neuroimaging of pediatric posterior fossa tumors including review of the literature. J Magn Reson Imaging 35:32–47

    Article  PubMed  Google Scholar 

  53. Kumar VA, Knopp EA, Zagzag D (2010) Magnetic resonance dynamic susceptibility-weighted contrast-enhanced perfusion imaging in the diagnosis of posterior fossa hemangioblastomas and pilocytic astrocytomas: initial results. J Comput Assist Tomogr 34:825–829

    Article  PubMed  Google Scholar 

  54. Rumboldt Z, Camacho DL, Lake D, Welsh CT, Castillo M (2006) Apparent diffusion coefficients for differentiation of cerebellar tumors in children. AJNR Am J Neuroradiol 27:1362–1369

    CAS  PubMed  Google Scholar 

  55. Rasalkar DD, Chu WC, Paunipagar BK, Cheng FW, Li CK (2013) Paediatric intra-axial posterior fossa tumours: pictorial review. Postgrad Med J 89:39–46

    Article  PubMed  Google Scholar 

  56. Panigrahy A, Krieger MD, Gonzalez-Gomez I et al (2006) Quantitative short echo time 1H-MR spectroscopy of untreated pediatric brain tumors: preoperative diagnosis and characterization. AJNR Am J Neuroradiol 27:560–572

    CAS  PubMed  Google Scholar 

  57. Schneider JF, Confort-Gouny S, Viola A et al (2007) Multiparametric differentiation of posterior fossa tumors in children using diffusion-weighted imaging and short echo-time 1H-MR spectroscopy. J Magn Reson Imaging 26:1390–1398

    Article  CAS  PubMed  Google Scholar 

  58. Bruggers CS, Moore K (2014) Magnetic resonance imaging spectroscopy in pediatric atypical teratoid rhabdoid tumors of the brain. J Pediatr Hematol Oncol 36:341–345

    Article  Google Scholar 

  59. Szabo B, Szabo I, Crişan D, Stefănuţ C (2011) Idiopathic orbital inflammatory pseudotumor: case report and review of the literature. Romanian J Morphol Embryol 52:927–930

    Google Scholar 

  60. Coleman SL, Setty BN, Tan JN, Sakai O (2014) Beyond B-cell lymphomas: a case of optic nerve anaplastic large cell lymphoma in a HIV positive patient. Clin Neuroradiol 24:373–376

    Article  CAS  PubMed  Google Scholar 

  61. Ortiz O, Schochet SS, Kotzan JM, Kostick D (1996) Radiologic-pathologic correlation: meningioma of the optic nerve sheath. AJNR Am J Neuroradiol 17:901–906

    CAS  PubMed  Google Scholar 

  62. Monteiro ML, Gonçalves AC, Siqueira SA, Gebrim EM (2012) Optic nerve sheath meningioma in the first decade of life: case report and review of the literature. Case Rep Ophthalmol 3:270–276

    Article  PubMed  PubMed Central  Google Scholar 

  63. Linscott LL, Osborn AG, Blaser S et al (2008) Pilomyxoid astrocytoma: expanding the imaging spectrum. AJNR Am J Neuroradiol 29:1861–1866

    Article  CAS  PubMed  Google Scholar 

  64. Morales H, Kwock L, Castillo M (2007) Magnetic resonance imaging and spectroscopy of pilomyxoid astrocytomas: case reports and comparison with pilocytic astrocytomas. J Comput Assist Tomogr 31:682–687

    Article  PubMed  Google Scholar 

  65. Rossi A, Cama A, Consales A et al (2006) Neuroimaging of pediatric craniopharyngiomas: a pictorial essay. J Pediatr Endocrinol Metab 19(Suppl 1):299–319

    PubMed  Google Scholar 

  66. Furtado SV, Thakar S, Ghosal N, Hegde AS (2012) Atypical presentation of pediatric mixed germ cell tumors in the sellar-suprasellar region. Neurol India 60:90–93

    Article  PubMed  Google Scholar 

  67. Chin BM, Orlandi RR, Wiggins RH (2012) Evaluation of the sellar and parasellar regions. Magn Reson Imaging Clin N Am 20:515–543

    Article  PubMed  Google Scholar 

  68. Osborn AG (2010) Chapter 25: Sellar neoplasm and tumor-like lesions. In: Osborn’s brain: imaging, pathology, and anatomy. Amirsys, Salt Lake City, pp. 681–726

    Google Scholar 

  69. Kwancharoen R, Blitz AM, Tavares F, Caturegli P, Gallia GL, Salvatori R (2014) Clinical features of sellar and suprasellar meningiomas. Pituitary 17:342–348

    Article  PubMed  Google Scholar 

  70. Moore W, Mathis D, Gargan L et al (2014) Pleomorphic xanthoastrocytoma of childhood: MR imaging and diffusion MR imaging features. AJNR Am J Neuroradiol 35:2192–2196

    Article  CAS  PubMed  Google Scholar 

  71. Zhang D, Henning TD, Zou LG et al (2008) Intracranial ganglioglioma: clinicopathological and MRI findings in 16 patients. Clin Radiol 63:80–91

    Article  CAS  PubMed  Google Scholar 

  72. Compton JJ, Laack NN, Eckel LJ, Schomas DA, Giannini C, Meyer FB (2012) Long-term outcomes for low-grade intracranial ganglioglioma: 30-year experience from the Mayo Clinic. J Neurosurg 117:825–830

    Article  PubMed  Google Scholar 

  73. Gonçalves VT, Reis F, Queiroz Lde S, França M Jr (2013) Pleomorphic xanthoastrocytoma: magnetic resonance imaging findings in a series of cases with histopathological confirmation. Arq Neuropsiquiatr 71:35–39

    Article  PubMed  Google Scholar 

  74. Law M, Young RJ, Babb JS et al (2008) Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 247:490–498

    Article  PubMed  PubMed Central  Google Scholar 

  75. Barkovich AJ, Krischer J, Kun LE et al (1990) Brain stem gliomas: a classification system based on magnetic resonance imaging. Pediatr Neurosurg 16:73–83

    Article  PubMed  Google Scholar 

  76. Choux M, Lena G, Do L (2000) Brainstem tumors. In: Choux M, Di Rocco C, Hockley A (eds) Pediatric neurosurgery. Churchill Livingstone, New York, pp. 471–449

    Google Scholar 

  77. Ahmed KA, Laack NN, Eckel LJ, Orme NM, Wetjen NM (2014) Histologically proven, low-grade brainstem gliomas in children: 30-year experience with long-term follow-up at Mayo Clinic. Am J Clin Oncol 37:51–56

    Article  PubMed  PubMed Central  Google Scholar 

  78. Barkovich AJ, Moore KR, Grant E et al (2007) Diagnostic imaging: pediatric neuroradiology, 1st edn. Amirsys, Salt Lake City

    Google Scholar 

  79. Buczkowicz P, Bartels U, Bouffet E, Becher O, Hawkins C (2014) Histopathological spectrum of paediatric diffuse intrinsic pontine glioma: diagnostic and therapeutic implications. Acta Neuropathol 128:573–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Epstein FJ, Farmer JP (1993) Brain-stem glioma growth patterns. J Neurosurg 78:408–412

    Article  CAS  PubMed  Google Scholar 

  81. Löbel U, Sedlacik J, Reddick WE et al (2011) Quantitative diffusion-weighted and dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging analysis of T2 hypointense lesion components in pediatric diffuse intrinsic pontine glioma. AJNR Am J Neuroradiol 32:315–322

    Article  PubMed  Google Scholar 

  82. Tong T, Zhenwei Y, Xiaoyuan F (2012) MRI and 1H-MRS on diagnosis of pineal region tumors. Clin Imaging 36:702–709

    Article  PubMed  Google Scholar 

  83. Barboriak DP, Lee L, Provenzale JM (2001) Serial MR imaging of pineal cysts: implications for natural history and follow-up. AJR Am J Roentgenol 176:737–743

    Article  CAS  PubMed  Google Scholar 

  84. Cauley KA, Linnell GJ, Braff SP, Filippi CG (2009) Serial follow-up MRI of indeterminate cystic lesions of the pineal region: experience at a rural tertiary care referral center. AJR Am J Roentgenol 193:533–537

    Article  PubMed  Google Scholar 

  85. Saunders DE, Phipps KP, Wade AM, Hayward RD (2005) Surveillance imaging strategies following surgery and/or radiotherapy for childhood cerebellar low-grade astrocytoma. J Neurosurg 102(2 Suppl):172–178

    Article  PubMed  Google Scholar 

  86. Sobel EL, Gilles FH, Leviton A et al (1996) Survival of children with infratentorial neuroglial tumors. The Childhood Brain Tumor Consortium. Neurosurgery 39:45–54

    Article  CAS  PubMed  Google Scholar 

  87. Ogiwara H, Bowman RM, Tomita T (2012) Long-term follow-up of pediatric benign cerebellar astrocytomas. Neurosurgery 70:40–47

    Article  PubMed  Google Scholar 

  88. Palma L, Celli P, Mariottini A (2004) Long-term follow-up of childhood cerebellar astrocytomas after incomplete resection with particular reference to arrested growth or spontaneous tumour regression. Acta Neurochir 146:581–588

    Article  CAS  PubMed  Google Scholar 

  89. Loh JK, Lieu AS, Chai CY et al (2013) Arrested growth and spontaneous tumor regression of partially resected low-grade cerebellar astrocytomas in children. Childs Nerv Syst 29:2051–2055

    Article  PubMed  PubMed Central  Google Scholar 

  90. Steinbok P, Poskitt K, Hendson G (2006) Spontaneous regression of cerebellar astrocytoma after subtotal resection. Childs Nerv Syst 22:572–576

    Article  PubMed  Google Scholar 

  91. Sutton LN, Cnaan A, Klatt L et al (1996) Postoperative surveillance imaging in children with cerebellar astrocytomas. J Neurosurg 84:721–725

    Article  CAS  PubMed  Google Scholar 

  92. Avery RA, Fisher MJ, Liu GT (2011) Optic pathway gliomas. J Neuroophthalmol 31:269–278

    Article  PubMed  Google Scholar 

  93. Listernick R, Ferner RE, Piersall L, Sharif S, Gutmann DH, Charrow J (2004) Late-onset optic pathway tumors in children with neurofibromatosis 1. Neurology 63:1944–1946

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Gaudino.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaudino, S., Martucci, M., Russo, R. et al. MR imaging of brain pilocytic astrocytoma: beyond the stereotype of benign astrocytoma. Childs Nerv Syst 33, 35–54 (2017). https://doi.org/10.1007/s00381-016-3262-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-016-3262-4

Keywords

Navigation