Skip to main content
Log in

Impact of the time scale of model sensitivity response on coupled model parameter estimation

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

That a model has sensitivity responses to parameter uncertainties is a key concept in implementing model parameter estimation using filtering theory and methodology. Depending on the nature of associated physics and characteristic variability of the fluid in a coupled system, the response time scales of a model to parameters can be different, from hourly to decadal. Unlike state estimation, where the update frequency is usually linked with observational frequency, the update frequency for parameter estimation must be associated with the time scale of the model sensitivity response to the parameter being estimated. Here, with a simple coupled model, the impact of model sensitivity response time scales on coupled model parameter estimation is studied. The model includes characteristic synoptic to decadal scales by coupling a long-term varying deep ocean with a slow-varying upper ocean forced by a chaotic atmosphere. Results show that, using the update frequency determined by the model sensitivity response time scale, both the reliability and quality of parameter estimation can be improved significantly, and thus the estimated parameters make the model more consistent with the observation. These simple model results provide a guideline for when real observations are used to optimize the parameters in a coupled general circulation model for improving climate analysis and prediction initialization.

摘 要

模式对参数不确定性的敏感性响应是用滤波理论和方法实现模式参数估计的基础. 由于耦合系统中各流体分量不同的物理特性, 耦合模式对于不同参数的响应时间尺度可以从小时到年代纪. 在状态估计中, 状态的更新频率经常与观测频率相关, 而参数的更新频率则与待估参数的模式敏感性响应时间尺度相关. 本文基于一个简单的耦合模式, 对模式敏感性响应时间尺度对耦合模式参数估计的影响进行了深入研究. 该耦合模式将年代纪长期变化的深海与受混沌大气驱使影响而缓慢(季节到年际)变化的上层海洋相联系, 可以反映气候变化的多尺度特征. 研究结果表明, 使用基于模式敏感性响应时间尺度确定的参数更新频率, 可以显著提高参数估计的可靠性和质量, 调整后的参数可以使模式结果与观测更加一致. 上述基于简单耦合模式的研究成果可为在耦合环流模式中使用实际观测来优化模式参数以改善气候分析和预报预测初始化提供参指导.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aksoy, A., F. Q. Zhang, and J. W. Nielsen-Gammon, 2006a: Ensemble-based simultaneous state and parameter estimation with MM5. Geophys. Res. Lett., 33, L12801, doi: 10.1029/2006GL026186.

    Article  Google Scholar 

  • Aksoy, A., F. Q. Zhang, and J. W. Nielsen-Gammon, 2006b: Ensemble-based simultaneous state and parameter estimation in a Two-Dimensional Sea-Breeze Model. Mon. Wea. Rev., 134, 2951–2970, doi: 10.1175/MWR3224.1.

    Article  Google Scholar 

  • Anderson, J. L., 2001: An ensemble adjustment Kalman Filter for data assimilation. Mon. Wea. Rev., 129, 2884–2903, doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    Article  Google Scholar 

  • Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131, 634–642, doi: 10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2.

    Article  Google Scholar 

  • Andronova, N. G., and M. E. Schlesinger, 2001: Objective estimation of the probability density function for climate sensitivity. J. Geophys. Res., 106(D19), 22605–22611, doi: 10.1029/2000JD000259.

    Article  Google Scholar 

  • Banks, H. T., 1992a: Control and Estimation in Distributed Parameter Systems. Frontiers in Applied Mathematics, Vol. 11, SIAM, Philadelphia, 227 pp.

    Google Scholar 

  • Banks, H. T., 1992b: Computational issues in parameter estimation and feedback control problems for partial differential equation systems. Physica D: Nonlinear Phenomena, 60, 226–238, doi: 10.1016/0167-2789(92)90239-J.

    Article  Google Scholar 

  • Borkar, V. S., and S. M. Mundra, 1999: Bayesian parameter estimation and adaptive control of Markov processes with timeaveraged cost. Applicationes Mathematicae, 25(4), 339–358.

    Google Scholar 

  • Collins, W. D., and Coauthors, 2006: The community climate system model version 3 (CCSM3). J. Climate, 19, 2122–2143, doi: 10.1175/JCLI3761.1.

    Article  Google Scholar 

  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19(5), 643–674, doi: 10.1175/JCLI3629.1.

    Article  Google Scholar 

  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geotropic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10143–10162.

    Article  Google Scholar 

  • Forest, C. E., M. R. Allen, P. H. Stone, and A. P. Sokolov, 2000: Constraining uncertainties in climate models using climate change detection techniques. Geophys. Res. Lett., 27, 569–572, doi: 10.1029/1999GL010859.

    Article  Google Scholar 

  • Gao, J. D., M. Xue, and D. J. Stensrud, 2013: The development of a hybrid EnKF-3DVAR algorithm for storm-scale data assimilation. Advances in Meteorology, 2013, 512656, doi: 10.1155/2013/512656.

    Article  Google Scholar 

  • Gregory, J. M., R. J. Stouffer, S. C. B. Raper, P. A. Stott, and N. A. Rayner, 2002: An observationally based estimate of the climate sensitivity. J. Climate, 15(22), 3117–3121, doi: 10.1175/1520-0442(2002)015<3117:AOBEOT>2.0.CO;2.

    Article  Google Scholar 

  • Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Wea. Rev., 128, 2905–2919, doi: 10.1175/1520-0493(2000)128<2905: AHEKFV>2.0.CO;2.

    Article  Google Scholar 

  • Houtekamer, P. L., and H. L. Mitchell, 2005: Ensemble Kalman filtering. Quart. J. Roy. Meteor. Soc., 131(613), 3269–3289, doi: 10.1256/qj.05.135.

    Article  Google Scholar 

  • Hunt, B. R., and Coauthors, 2004: Four-dimensional ensemble Kalman filtering. Tellus A, 56(4), 273–277, doi: 10.3402/tellusa.v56i4.14424.

    Article  Google Scholar 

  • Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82, 35–45, doi: 10.1115/1.3662552.

    Article  Google Scholar 

  • Kalman, R. E., and R. S. Bucy, 1961: New results in linear filtering and prediction theory. Journal of Basic Engineering, 83, 95–108, doi: 10.1115/1.3658902.

    Article  Google Scholar 

  • Knutti, R., T. F. Stocker, F. Joos, and G. K. Plattner, 2002: Constraints on radiative forcing and future climate change from observations and climate model ensembles. Nature, 416(6882), 719–723, doi: 10.1038/416719a.

    Article  Google Scholar 

  • Laroche, S., P. Gauthier, M. Tanguay, S. Pellerin, and J. Morneau, 2007: Impact of the different components of 4DVAR on the global forecast system of the Meteorological Service of Canada. Mon. Wea. Rev., 135(6), 2355–2364, doi: 10.1175/MWR3408.1.

    Article  Google Scholar 

  • Pan, C. D., M. Yaremchuk, D. Nechaev, and H. Ngodock, 2011: Variational assimilation of glider data in Monterey Bay. J. Mar. Res., 69, 331–346, doi: 10.1357/002224011798765259.

    Article  Google Scholar 

  • Pan, C. D., L. Y. Zheng, R. H. Weisberg, Y. G. Liu, and C. E. Lembke, 2014: Comparisons of different ensemble schemes for glider data Assimilation on West Florida Shelf. Ocean Modelling, 81, 13–24, doi: 10.1016/j.ocemod.2014.06.005.

    Article  Google Scholar 

  • Pires, C., R. Vautard, and O. Talagrand, 1996: On extending the limits of variational assimilation in nonlinear chaotic systems. Tellus A, 48(1), 96–121, http://dx.doi.org/10.3402/tellusa.v48i1.11634.

    Article  Google Scholar 

  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon et al., Eds., Cambridge University Press, 589–662.

    Google Scholar 

  • Smith, D. M., S. Cusack, A. W. Colman, C. K. Folland, G. R. Harris, and J. M. Murphy, 2007: Improved surface temperature prediction for the coming decade from a global climate model. Science, 317, 796–799, doi: 10.1126/science.1139540.

    Article  Google Scholar 

  • Yang, X. S., and T. Delsole, 2009: Using the ensemble Kalman filter to estimate multiplicative model parameters. Tellus, 61, 601–609, http://dx.doi.org/10.1111/j.1600-0870.2009.00407.x.

    Article  Google Scholar 

  • Zhang, M., F. Q. Zhang, X. Y. Huang, and X. Zhang, 2011: Intercomparison of an ensemble Kalman filter with three-and four-dimensional variational data assimilation methods in a limited-area model over the month of June 2003. Mon. Wea. Rev., 139, 566–572, doi: 10.1175/2010MWR3610.1.

    Article  Google Scholar 

  • Zhang, S., and J. L. Anderson, 2003: Impact of spatially and temporally varying estimates of error covariance on assimilation in a simple atmospheric model. Tellus A, 55, 126–147, http://dx.doi.org/10.3402/tellusa.v55i2.12087.

    Article  Google Scholar 

  • Zhang, S., 2011: A study of impacts of coupled model initial shocks and state-parameter optimization on climate predictions using a simple pycnocline prediction model. J. Climate, 24(23), 6210–6226, doi: 10.1175/JCLI-D-10-05003.1.

    Article  Google Scholar 

  • Zhang, S., Z. Liu, A. Rosati, and T. Delworth, 2012: A study of enhancive parameter correction with coupled data assimilation for climate estimation and prediction using a simple coupled model. Tellus A, 64, 10963, http://dx.doi.org/10.3402/tellusa.v64i0.10963.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Grant No. 41676088), the National Key Research and Development Project of China (2016YFC1401800, 2017YFC1404100, 2017YFC1404102), the Fundamental Research Funds for the Central Universities (HEUCF 041705), and the Foundation of the Key Laboratory of Marine Environmental Information Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoqing Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zhang, S., Li, S. et al. Impact of the time scale of model sensitivity response on coupled model parameter estimation. Adv. Atmos. Sci. 34, 1346–1357 (2017). https://doi.org/10.1007/s00376-017-6272-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-6272-6

Key words

关键词

Navigation