Skip to main content
Log in

Cesàro Means of Subsequences of Partial Sums of Trigonometric Fourier Series

  • Published:
Constructive Approximation Aims and scope

Abstract

In 1936 Zygmunt Zalcwasser asked, with respect to the trigonometric system, how “rare” can a sequence of strictly monotone increasing integers \((n_j)\) be such that the almost everywhere relation \(\frac{1}{N}\sum _{j=1}^N S_{n_j}f \rightarrow f\) is fulfilled for each integrable function f. In this paper, we give an answer to this question. It follows from the main result that this a.e. relation holds for every integrable function f and lacunary sequence \((n_j)\) of natural numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonov, N.Y.: Convergence of Fourier series. East J. Approx. 2, 187–196 (1996). (English)

    MathSciNet  MATH  Google Scholar 

  2. Bary, N.K.: A Treatise on Trigonometric Series. Pergamon Press, Oxford (1964). (English)

    MATH  Google Scholar 

  3. Belinsky, E.S.: On the summability of Fourier series with the method of lacunary arithmetic means. Anal. Math. 10, 275–282 (1984)

    Article  MathSciNet  Google Scholar 

  4. Belinsky, E.S.: Summability of Fourier series with the method of lacunary arithmetical means at the Lebesgue points. Proc. Am. Math. Soc. 125(12), 3689–3693 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press Inc., Orlando (1988)

    MATH  Google Scholar 

  6. Carleson, L.: On convergence and growth of partial sums of Fourier series. Acta Math. 116, 135–157 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carleson, L.: Appendix to the paper by J.P. Kahane and Y. Katznelson, Series de Fourier des fonctions bornees. Studies in pure mathematics, Birkhauser, Basel-Boston, Mass, pp. 395–413 (1983)

  8. Du Bois-Reymond, P.: Untersuchungen über die Convergenz und Divergenz der Fourierschen Darstellungsformen, vol. 12, pp. 1–103. Abhand. Akad., München (1876). (English)

    MATH  Google Scholar 

  9. Gát, G.: On the Calderon Zygmund decomposition lemma on the Walsh–Paley group. Acta Math. Acad. Paedagog. Nyházi. (N.S.) 14, 25–30 (1998)

    MathSciNet  MATH  Google Scholar 

  10. Gát, G.: Almost everywhere convergence of Fejér and logarithmic means of subsequences of partial sums of the Walsh–Fourier series of integrable functions. J. Approx. Theory 162(4), 687–708 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hunt, R.A.: On the convergence of Fourier series. In: Orthogonal Expansions and Their Continuous Analogues, Southern Ill, pp. 235–255. University Press, Carbondale (1968). (English)

  12. Kolmogoroff, A.N.: Une série de Fourier–Lebesgue divergente presque partout. Fundam. Math. 4, 324–328 (1923). (English)

    Article  MATH  Google Scholar 

  13. Kolmogoroff, A.N.: Une série de Fourier–Lebesgue divergente partout. C. R. Acad. Sci. Paris 183, 1327–1329 (1926). (English)

    MATH  Google Scholar 

  14. Konyagin, S.V.: Divergence everywhere of subsequences of partial sums of trigonometric Fourier series. Proc. Steklov Inst. Math. Suppl. 2, 167–175 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Lebesgue, H.: Recherches sur la convergence des séries de Fourier. Math. Ann. 61, 251–280 (1905). (English)

    Article  MathSciNet  MATH  Google Scholar 

  16. Salem, R.: On strong summability of Fourier series. Am. J. Math. 77, 393–403 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schipp, F., Wade, W.R., Simon, P.: Walsh Series: An Introduction to Dyadic Harmonic Analysis. Adam Hilger, Bristol (1990). (English)

    MATH  Google Scholar 

  18. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions (PMS-30), vol. 30. Princeton University Press, Princeton (2016)

    Google Scholar 

  19. Totik, V.: On the divergence of Fourier-series. Publ. Math. Debr. 29(3–4), 251–264 (1982)

    MATH  Google Scholar 

  20. Zagorodnij, N.A., Trigub, R.M.: A question of Salem. Theory of functions and mappings. Collect. Sci. Works, Kiev, pp. 97–101 (1979)

  21. Zalcwasser, Z.: Sur la sommabilité des séries de Fourier. Stud. Math. 6, 82–88 (1936)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author is deeply indebted to the anonymous referees for finding some errors in the first version of the manuscript and for their valuable help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Gát.

Additional information

Communicated by Vilmos Totik.

Research supported by the Hungarian National Foundation for Scientific Research (OTKA), Grant No. K111651 and by project EFOP-3.6.1-16-2016-00022 supported by the European Union, co-financed by the European Social Fund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gát, G. Cesàro Means of Subsequences of Partial Sums of Trigonometric Fourier Series. Constr Approx 49, 59–101 (2019). https://doi.org/10.1007/s00365-018-9438-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-018-9438-2

Keywords

Mathematics Subject Classification

Navigation