Skip to main content
Log in

Distributions of Poles to Painlevé Transcendents via Padé Approximations

  • Published:
Constructive Approximation Aims and scope

Abstract

A version of the Fair–Luke algorithm has been used to find the Padé approximate solutions to the Painlevé I, II, and IV equations. The distributions of poles in the complex plane are studied to check the dynamics of movable poles and the emergence of rational and truncated solutions, as well as various patterns formed by the poles. The high-order approximations allow us to check asymptotic expansions at infinity and estimate the range of asymptotic domains. The Coulomb gas interpretation of the pole ensembles is discussed in view of the patterns arising in Painlevé IV transcendents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ablowitz, M.J., Segur, H.: Asymptotic solutions of the Korteweg–de Vries equation. Stud. Appl. Math. 57(1), 13–44 (1977)

    MATH  MathSciNet  Google Scholar 

  2. Bertola, M.: On the location of poles for the Ablowitz–Segur family of solutions to the second Painlevé equation. Nonlinearity 25, 1179–1185 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bonitz, M., et al.: Classical and quantum Coulomb crystals. Phys. Plasmas 15, 055704 (2008)

    Article  Google Scholar 

  4. Boutroux, P.: Recherches sur les transcendentes de M. Painlevé et l’étude asymptotique des équations différentielles du seconde ordre. Ann. Sci. Éc. Norm. Super. 30, 265–375 (1913); Ann. Sci. Éc. Norm. Super. 31, 99–159 (1914)

    MathSciNet  Google Scholar 

  5. Dubrovin, B., Grava, T., Klein, C.: On universality of critical behaviour in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the tritronquée solution to the Painlevé-I equation. J. Nonlinear Sci. 19, 57–94 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fair, W., Luke, Y.: Rational approximations to the solution of the second order Riccati equation. Math. Comput. 20, 602–605 (1968)

    Article  MathSciNet  Google Scholar 

  7. Fokas, A.S., Its, A.R., Kapaev, A.A., Novokshenov, V.Yu.: Painlevé Transcendents. The Riemann–Hilbert Approach. Math. Surveys and Monographs, vol. 128. Am. Math. Soc., Providence (2006)

    Book  MATH  Google Scholar 

  8. Fornberg, B., Weideman, J.A.C.: A numerical methodology for the Painlevé equations. J. Comput. Phys. 230, 5957–5973 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Forrester, P.J.: Log-Gases and Random Matrices. London Math. Soc. Monographs, vol. 34. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  10. Gromak, V.I., Laine, I., Shimomura, S.: Painlevé Equations in the Complex Plane. De Gruyter Studies in Mathematics, vol. 28. Walter de Gruyter, Berlin (2002)

    Book  MATH  Google Scholar 

  11. Hardin, D.P., Saff, E.B.: Discretizing manifolds via minimum energy points. Not. Am. Math. Soc. 51(10), 1186–1194 (2004)

    MATH  MathSciNet  Google Scholar 

  12. Hastings, S.P., McLeod, J.B.: A boundary value problem associated with the second Painlevé transcendent and the Korteweg–de Vries equation. Arch. Ration. Mech. Anal. 73, 31–51 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jones, W., Thron, W.: Continued fractions in numerical analysis. In: Brezinski, C. (ed.) Continued Fractions and Padé Approximant. North-Holland, Amsterdam (1990)

    Google Scholar 

  14. Joshi, N., Kitaev, A.V.: On Boutroux’s tritronquée solutions of the first Painlevé equation. Stud. Appl. Math. 107, 253–291 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kapaev, A., Kitaev, A.: Connection formulas for the first Painlevé transcendent in the complex plane. Lett. Math. Phys. 27, 243–252 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kapaev, A.A.: Scaling limits in the forth Painlevé transcendent. POMI Preprint 15 (1996)

  17. Marikhin, V.G., Shabat, A.B., Boiti, M., Pempinelli, F.: Self-similar solutions of NLS-type dynamical systems. J. Exp. Theor. Phys. 117(3), 634–643 (2000)

    MathSciNet  Google Scholar 

  18. Novokshenov, V.Yu.: Padé approximations of Painlevé I and II transcendents. Theor. Math. Phys. 159(3), 852–861 (2009)

    MathSciNet  Google Scholar 

  19. Novokshenov, V.Yu.: Boutroux ansatz for the second Painlevé equation in the complex domain. Izv. Akad. Nauk SSSR, Ser. Mat. 54, 1229–1251 (1990)

    MATH  Google Scholar 

  20. Nuttall, J.: The convergence of Padé approximants of meromorphic functions. J. Math. Anal. Appl. 31, 129–140 (1970)

    MathSciNet  Google Scholar 

  21. Olver, S.: A Mathematica package for computing solutions to matrix-valued Riemann–Hilbert problems. http://www.comlab.ox.ac.uk/people/sheehan.olver/projects/RHPackage.html

  22. Painlevé, P.: Sur les équations differentielles du second ordre et d’ordre supérieur, dont l’intégrale générale est uniforme. Acta Math. 25, 1–86 (1902)

    Article  MathSciNet  Google Scholar 

  23. Saff, E.B.: Logarithmic potential theory with applications to approximation theory. Surv. Approx. Theory 5, 165–200 (2010)

    MathSciNet  Google Scholar 

  24. Stieltjes, T.J.: Sur certains polynomes qui vérifient une équation différentielle linéaire du second ordre et sur la theorie des fonctions de Lame. Acta Math. 6(1), 321–326 (1885)

    Article  MATH  MathSciNet  Google Scholar 

  25. Tracy, C., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151–174 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  26. Yablonskii, A.I.: On rational solutions of the second Painlevé equation. Vesti Akad. Nauk BSSR, Ser. Fiz. Tekh. Nauk 3, 30–35 (1959)

    Google Scholar 

  27. Vorob’ev, A.P.: On the rational solutions of the second Painlevé equation. Differ. Equ. 1, 79–81 (1965)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Y. Novokshenov.

Additional information

Communicated by Percy Deift and Alexander Its.

This work was supported in part by RFBR Grant # 10-01-00088.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novokshenov, V.Y. Distributions of Poles to Painlevé Transcendents via Padé Approximations. Constr Approx 39, 85–99 (2014). https://doi.org/10.1007/s00365-013-9190-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-013-9190-6

Keywords

Mathematics Subject Classification (2000)

Navigation