Skip to main content
Log in

The ability of the Antarctic nematode Panagrolaimus davidi to survive intracellular freezing is dependent upon nutritional status

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The Antarctic nematode Panagrolaimus davidi is the best documented example of an animal surviving intracellular freezing and the only animal so far shown to survive such freezing throughout its tissues. However, a recent study found that after exposure to a freezing stress that produced intracellular freezing in a proportion of nematodes, the resulting survival levels could be explained if those nematodes that froze intracellularly had died. We have thus re-examined the survival of intracellular freezing in this nematode. The ability to survive a freezing exposure that is likely to produce intracellular freezing (freezing at −10 °C) declines with culture age. In cultures that are fed regularly, the ability to survive freezing at −10 °C increases, but in starved cultures freezing survival declines. Survival of intracellular freezing in fed cultures was confirmed using cryomicroscopy, staining of cells with vital dyes and by freeze substitution and transmission electron microscopy. We have thus confirmed that P. davidi can survive intracellular freezing and shown that this ability is dependent upon them being well fed. The effect of culture conditions on the nutrient status of the nematodes should thus be an important factor in the design of experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

cfu:

Colony forming units

rpm:

Revolutions per minute

T min :

Minimum temperature

References

  • Ansart A, Vernon P (2003) Cold hardiness in molluscs. Acta Oecol-Int J Ecol 24:95–102

    Article  Google Scholar 

  • Brown IM, Wharton DA, Millar RB (2004) The influence of temperature on the life history of the Antarctic nematode Panagrolaimus davidi. Nematology 6:883–890

    Article  Google Scholar 

  • Costanzo JP, Lee RE, Ultsch GR (2008) Physiological ecology of overwintering in hatchling turtles. J Exp Zool Part A 309:297–379

    Google Scholar 

  • Grant W, Viney M (2011) The dauer phenomenon. In: Perry RN, Wharton DA (eds) Molecular and physiological basis of nematode survival. CABI Publishing, Wallingford, pp 99–125

    Chapter  Google Scholar 

  • Greenaway P (1970) Sodium regulation in the freshwater mollusc Limnaea stagnalis (L) (Gastropoda, Pulmonata). J Exp Biol 53:147–163

    PubMed  CAS  Google Scholar 

  • Hengherr S, Worland MR, Reuner A, Brümmer F, Schill RO (2009) Freeze tolerance, supercooling points and ice formation: comparative studies on the subzero temperature survival of limno-terrestrial tardigrades. J Exp Biol 212:802–807

    Article  PubMed  CAS  Google Scholar 

  • Holmstrup M (2003) Overwintering adaptations in earthworms. Pedobiologia 47:504–510

    Google Scholar 

  • Hooper DJ (1986) Extraction of free-living stages from soil. In: Southey JF (ed) Laboratory methods for work with plant and soil nematodes. HMSO, London, pp 5–30

    Google Scholar 

  • Issartel J, Voituron Y, Odagescu V, Baudot A, Guillot G, Ruaud JP, Renault D, Vernon P, Hervant F (2006) Freezing or supercooling: how does an aquatic subterranean crustacean survive exposures at subzero temperatures? J Exp Biol 209:3469–3475

    Article  PubMed  Google Scholar 

  • Lee RE (2010) A primer on insect cold tolerance. In: Denlinger DL, Lee RE (eds) Low temperature biology of insects. Cambridge University Press, Cambridge, pp 3–34

    Chapter  Google Scholar 

  • Lee RE, McGrath JJ, Morason RT, Taddeo RM (1993) Survival of intracellular freezing, lipid coalescence and osmotic fragility in fat body cells of the freeze-tolerant gall fly Eurosta solidaginis. J Ins Physiol 39:445–450

    Article  CAS  Google Scholar 

  • Lewis SC, Dyal LA, Hilburn CF, Weitz S, Liau WS, LaMunyon CW, Denver DR (2009) Molecular evolution in Panagrolaimus nematodes: origins of parthenogenesis, hermaphroditism and the Antarctic species P. davidi. BMC Evol Biol 9:15

    Article  PubMed  Google Scholar 

  • Porazinska DL, Wall DH, Virginia RA (2002) Invertebrates in ornithogenic soils on Ross Island, Antarctica. Polar Biol 25:569–574

    Google Scholar 

  • Sinclair BJ, Renault D (2010) Intracellular ice formation in insects: unresolved after 50 years? Comp Biochem Physiol A-Mol Integr Physiol 155:14–18

    Article  PubMed  Google Scholar 

  • Sinclair BJ, Roberts SP (2005) Acclimation, shock and hardening in the cold. J Therm Biol 30:557–562

    Article  Google Scholar 

  • Smith T, Wharton DA, Marshall CJ (2008) Cold tolerance of an Antarctic nematode that survives intracellular freezing: comparisons with other nematode species. J Comp Physiol B 178:93–100

    Article  PubMed  CAS  Google Scholar 

  • Stiernagle T (1999) Maintenance of C. elegans. In: Hope IA (ed) C. elegans: a practical approach. Oxford University Press, Oxford, New York, pp 51–67

    Google Scholar 

  • Storey KB, Storey JM (1988) Freeze tolerance in animals. Physiol Rev 68:27–84

    PubMed  CAS  Google Scholar 

  • Tursman D, Duman JG, Knight CA (1994) Freeze tolerance adaptations in the centipede, Lithobius fortificatus. J Exp Zool 268:347–353

    Article  Google Scholar 

  • Voituron Y, Barre H, Ramlov H, Douady CJ (2009) Freeze tolerance evolution among anurans: frequency and timing of appearance. Cryobiol 58:241–247

    Article  Google Scholar 

  • Wharton DA (2003) The environmental physiology of Antarctic terrestrial nematodes: a review. J Comp Physiol B 173:621–628

    Article  PubMed  CAS  Google Scholar 

  • Wharton DA (2011) Cold tolerance. In: Perry RN, Wharton DA (eds) Molecular and physiological basis of nematode survival. CABI Publishing, Wallingford, pp 182–204

    Chapter  Google Scholar 

  • Wharton DA, Brown IM (1989) A survey of terrestrial nematodes from the McMurdo Sound region, Antarctica. NZ J Zool 16:467–470

    Article  Google Scholar 

  • Wharton DA, Brown IM (1991) Cold tolerance mechanisms of the Antarctic nematode Panagrolaimus davidi. J Exp Biol 155:629–641

    Google Scholar 

  • Wharton DA, Ferns DJ (1995) Survival of intracellular freezing by the Antarctic nematode Panagrolaimus davidi. J Exp Biol 198:1381–1387

    PubMed  Google Scholar 

  • Wharton DA, Rowland JJ (1984) A thermoelectric microscope stage for the measurement of the supercooling points of microscopic organisms. J Microsc 134:299–305

    Article  Google Scholar 

  • Wharton DA, Judge KF, Worland MR (2000) Cold acclimation and cryoprotectants in a freeze-tolerant Antarctic nematode, Panagrolaimus davidi. J Comp Physiol B 170:321–327

    Article  PubMed  CAS  Google Scholar 

  • Wharton DA, Goodall G, Marshall CJ (2003) Freezing survival and cryoprotective dehydration as cold tolerance mechanisms in the Antarctic nematode Panagrolaimus davidi. J Exp Biol 206:215–221

    Article  PubMed  Google Scholar 

  • Wharton DA, Mutch JS, Wilson PW, Marshall CJ, Lim M (2004) A simple ice nucleation spectrometer. CryoLetters 25:335–340

    PubMed  Google Scholar 

  • Wharton DA, Downes MF, Goodall G, Marshall CJ (2005) Freezing and cryoprotective dehydration in an Antarctic nematode (Panagrolaimus davidi) visualised using a freeze substitution technique. Cryobiol 50:21–28

    Article  CAS  Google Scholar 

  • Worland MR, Wharton DA, Byars SG (2004) Intracellular freezing and survival in the freeze tolerant alpine cockroach Celatoblatta quinquemaculata. J Ins Physiol 50:225–232

    Article  CAS  Google Scholar 

  • Yi SX, Lee RE (2003) Detecting freeze injury and seasonal cold-hardening of cells and tissues in the gall fly larvae, Eurosta solidaginis (Diptera : Tephritidae) using fluorescent vital dyes. J Ins Physiol 49:999–1004

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Karen Judge and Matthew Downes for technical assistance, the Otago Centre for Electron Microscopy for access to their facilities and Antarctica New Zealand for the support of our Antarctic studies. MRR would like to acknowledge the support of a Kelly Tarlton’s Antarctica New Zealand Scholarship and the Fanny Evans Postgraduate Scholarship for Women. Funding for this study was provided by the University of Otago (PBRF: PL.104033.01.S.FZ.75) and Antarctica New Zealand (event no. KO66).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All experiments complied with the current laws of New Zeland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Wharton.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raymond, M.R., Wharton, D.A. The ability of the Antarctic nematode Panagrolaimus davidi to survive intracellular freezing is dependent upon nutritional status. J Comp Physiol B 183, 181–188 (2013). https://doi.org/10.1007/s00360-012-0697-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-012-0697-0

Keywords

Navigation