Skip to main content
Log in

GABA and glutamate specifically induce contractions in the sponge Tethya wilhelma

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Sponges (Porifera) are nerve- and muscleless. Nevertheless, they react to external stimuli in a coordinated way, by body contraction, oscule closure or stopping pumping activity. The underlying mechanisms are still unknown, but evidence has been found for chemical messenger-based systems. We used the sponge Tethya wilhelma to test the effect of γ-aminobutyric acid (GABA) and glutamate (l-Glu) on its contraction behaviour. Minimal activating concentrations were found to be 0.5 μM (GABA) and 50 μM (l-Glu), respectively. Taking maximum relative contraction speed and minimal relative projected body area as a measure of the sponge’s response, a comparison of the dose–response curves indicated a higher sensitivity of the contractile tissue for GABA than for l-Glu. The concentrations eliciting the same contractile response differ by about 100-fold more than the entire concentration range tested. In addition, desensitising effects and spasm-like reactions were observed. Presumably, a GABA/l-Glu metabotropic receptor-based system is involved in the regulation of contraction in T. wilhelma. We discuss a coordination system for sponges based on hypothetical chemical messenger pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

A r max :

Maximum relative projected area

A r min :

Minimal relative projected area

A r :

Relative projected area

ΔA r :

Change of relative projected area

c s :

Substance concentration

GABA:

γ-Aminobutyric acid

GABAAR, GABACR:

Ionotropic GABA receptors

GABABR:

Metabotropic GABA receptor

iGluR:

Ionotropic l-Glu receptors

l-Glu:

l-Glutamic acid

LSD:

Least significant difference

mGluR:

Metabotropic l-Glu receptor

P C :

Contracted phase

P E :

Expanded phase

v :

Contraction speed

v C max :

Maximum relative contraction speed

v E max :

Maximum relative speed of expansion

v i max :

Maximum induced relative contraction speed

ΔpH:

pH-shift

References

  • Aristotle (1498) De natura animalium libri novem; de partibus animalium libri quatuor; de generatione animalium libri quinqui. Electronic facsimile: Bibliotheque National de France: http://www.gallica.bnf.fr/Catalogue/NoticesInd/FRBNF37256929.html, Paris, pp 89

  • Bagby RM (1970) The fine structure of pinacocytes in the marine sponge Microciona prolifera. Z Zellforsch Mikroskop Anat 105:579–594

    Article  CAS  Google Scholar 

  • Bond C (1992) Continuous cell movements rearrange anatomical structures in intact sponges. J Exp Zool 263:284–302

    Article  PubMed  CAS  Google Scholar 

  • Bond C, Harris AK (1988) Locomotion of sponges and its physical mechanism. J Exp Zool 246:271–284

    Article  PubMed  CAS  Google Scholar 

  • Bouche N, Lacombe B, Fromm H (2003) GABA signaling: a conserved and ubiquitous mechanism. Trends Cell Biol 13:607–610

    Article  PubMed  CAS  Google Scholar 

  • Chebib M, Johnston GAR (1999) The ‘ABC’ of GABA receptors: a brief review. Clin Exp Pharmacol Physiol 26:937–940

    Article  PubMed  CAS  Google Scholar 

  • Chiu J, DeSalle R, Lam HM, Meisel L, Coruzzi G (1999) Molecular evolution of glutamate receptors: a primitive signalling mechanism that existed before plants and animals diverged. Mol Biol Evol 16:826–838

    PubMed  CAS  Google Scholar 

  • Davenport R (2002) Glutamate receptors in plants. Ann Bot 90:549–557

    Article  PubMed  CAS  Google Scholar 

  • Ellwanger K, Nickel M (2006) Neuroactive substances specifically modulate rhythmic body contractions in the nerveless metazoon Tethya wilhelma (Demospongiae, Porifera). Front Zool 3:7

    Article  PubMed  CAS  Google Scholar 

  • Emson RH (1966) The reactions of the sponge Cliona celata to applied stimuli. Comp Biochem Physiol 18:805–827

    Article  CAS  Google Scholar 

  • Fagg GE, Foster AC (1983) Amino acid neurotransmitters and their pathways in the mammalian central nervous system. Neuroscience 9:701–719

    Article  PubMed  CAS  Google Scholar 

  • Fishelson L (1981) Observations on the moving colonies of the genus Tethya (Demospongia, Porifera): 1. behavior and cytology. Zoomorphology 98:89–100

    Article  Google Scholar 

  • Fitch R (2005) WinSTAT—the statistics add-in for Microsoft Excel release 2005.1, Staufen, Germany

  • Ito I, Watanabe S, Kimura T, Kirino Y, Ito E (2003) Distributions of gamma-aminobutyric acid immunoreactive and acetylcholinesterase-containing cells in the primary olfactory system in the terrestrial slug Limax marginatus. Zoolog Sci 20:1337–1346

    Article  PubMed  CAS  Google Scholar 

  • Jones WC (1962) Is there a nervous system in sponges? Biol Rev 37:1–50

    Article  PubMed  CAS  Google Scholar 

  • Kilian EF (1967) Ortsveränderungen von Süßwasserschwämmen unter dem Einfluß von Licht. Verh Dtsch Zool Ges 31(Suppl):395–401

    Google Scholar 

  • Lentz TL (1968) Primitive nervous systems. Yale University Press, New Haven

    Google Scholar 

  • Leys SP, Mackie GO (1997) Electrical recording from a glass sponge. Nature 387:29–30

    Article  CAS  Google Scholar 

  • Lieberkühn N (1859) Neue Beiträge zur Anatomie der Spongien. Arch Anat Physiol:353–358, 515–529

  • Mackie GO (1979) Is there a conduction system in sponges? In: Lévi C, Boury-Esnault N (eds) Biologie des Spongiaires. Editions du C.N.R.S., vol 291. C.N.R.S., Paris, pp 145–152

  • Mackie GO (1990) The elementary nervous system revisited. Am Zool 30:907–920

    Google Scholar 

  • Madson P (2003) Digital camera remote shutter and digital camera time trigger. http://www.digital-camera.dk/

  • McNair GT (1923) Motor reactions of the fresh-water sponge Ephydatia fluviatilis. Biol Bull 44:153–166

    Article  Google Scholar 

  • Mezler M, Muller T, Raming K (2001) Cloning and functional expression of GABAB receptors from Drosophila. Eur J Neurosci 13:477–486

    Article  PubMed  CAS  Google Scholar 

  • Nickel M (2001) Cell biology and biotechnology of marine invertebrates—Sponges (Porifera) as model organisms. Arb Mitteil Biol Inst Uni Stuttgart 32:1–157

    Google Scholar 

  • Nickel M (2004) Kinetics and rhythm of body contractions in the sponge Tethya wilhelma (Porifera: Demospongiae). J Exp Biol 207:4515–4524

    Article  PubMed  Google Scholar 

  • Nickel M (2006) Like a ‘rolling stone’: quantitative analysis of the body movement and skeletal dynamics of the sponge Tethya wilhelma. J Exp Biol 209:2839–2846

    Article  PubMed  Google Scholar 

  • Nickel M, Brümmer F (2004) Body extension types of Tethya wilhelma: cellular organisation and their function in movement. Boll Mus Ist Biol Univ Genova 68:483–489

    Google Scholar 

  • Nickel M, Leininger S, Proll G, Brümmer F (2001) Comparative studies on two potential methods for the biotechnological production of sponge biomass. J Biotechnol 92:169–178

    Article  PubMed  CAS  Google Scholar 

  • Nickel M, Vitello M, Brümmer F (2002) Dynamics and cellular movements in the locomotion of the sponge Tethya wilhelma. Integr Comp Biol 42:1285

    Google Scholar 

  • Nickel M, Donath T, Schweikert M, Beckmann F (2006) Functional morphology of Tethya (Porifera): 1. quantitative 3D-analysis of T. wilhelma by synchrotron radiation based x-ray microtomography. Zoomorphol 1–15 (online first)

  • Panek I, Torkkeli PH (2005) Inhibitory glutamate receptors in spider peripheral mechanosensory neurons. Eur J Neurosci 22:636–646

    Article  PubMed  Google Scholar 

  • Panek I, Meisner S, Torkkeli PH (2003) Distribution and function of GABAB receptors in spider peripheral mechanosensilla. J Neurophysiol 90:2571–2580

    Article  PubMed  CAS  Google Scholar 

  • Pantin CFA (1952) The elementory nervous system. Proc R Soc Lond B Biol Sci 140:147–168

    Article  PubMed  CAS  Google Scholar 

  • Parker GH (1919) The elementory nervous system. Lippincot, Philadelphia

  • Pavans de Ceccatty M (1974) Coordination in sponges—the foundations of integration. Am Zool 14:895–903

    Google Scholar 

  • Pavans de Ceccatty M (1979) Cell correlations and integrations in sponges. Biologie des Spongiaires 291:123–135

    Google Scholar 

  • Pavans de Ceccatty M (1986) Cytoskeletal organization and tissue patterns of epithelia in the sponge Ephydatia mülleri. J Morphol 189:45–66

    Article  Google Scholar 

  • Perovic S, Krasko A, Prokic I, Mueller IM, Mueller WEG (1999) Origin of neuronal-like receptors in Metazoa: cloning of a metabotropic glutamate/GABA-like receptor from the marine sponge Geodia cydonium. Cell Tissue Res 296:395–404

    Article  PubMed  CAS  Google Scholar 

  • Ramoino P, Fronte P, Beltrame F, Diasporo A, Fato M, Raiteri L, Stigliani S, Usai C (2003) Swimming behaviour regulation by GABAB receptors in Paramecium. Exp Cell Res 291:398–405

    Article  PubMed  CAS  Google Scholar 

  • Ramoino P, Usai C, Beltrame F, Fato M, Gallus L, Tagliafierro G, Magrassi R, Diaspro A (2005) GABAB receptor intracellular trafficking after internalization in Paramecium. Microsc Res Tech 68:290–295

    Article  PubMed  CAS  Google Scholar 

  • Rasband WS (1997–2005) ImageJ. National Institutes of Health, Bethesda, Maryland, USA, http://www.rsb.info.nih.gov/ij/

  • Reiswig HM (1971) In-situ pumping activities of tropical Demospongiae. Mar Biol 9:38–50

    Article  Google Scholar 

  • Richmond JE, Murphy AD, Lukowiak K, Bulloch AGM (1994) GABA regulates the buccal motor output of Helisoma by two pharmacologically distinct actions. J Comp Physiol A 174:593–600

    Article  CAS  Google Scholar 

  • Sarà M, Sarà A, Nickel M, Brümmer F (2001) Three new species of Tethya (Porifera: Demospongiae) from German aquaria. Stuttgarter Beitr Naturk Ser A 631:1–15

    Google Scholar 

  • Schmidt O (1866) Zweites Supplement der Spongien des Adriatischen Meeres enthaltend die Vergleichung der Adriatischen und Britischen Spongiengattungen. Verlag von Wilhelm Engelmann, Leipzig

  • Schuske K, Beg AA, Jorgensen EM (2004) The GABA nervous system in C. elegans. Trends Neurosci 27:407–414

    Article  PubMed  CAS  Google Scholar 

  • von Bohlen und Halbach O, Dermietzel R (2002) Neurotransmitters and neuromodulators. Wiley-VCH, Weinheim

    Google Scholar 

  • Weissenfels N (1990) Condensation rhythm of fresh-water sponges (Spongillidae, Porifera). Eur J Cell Biol 53:373–383

    PubMed  CAS  Google Scholar 

  • Weyrer S, Rutzler K, Rieger R (1999) Serotonin in Porifera? Evidence from developing Tedania ignis, the Caribbean fire sponge (Demospongiae). Mem Queensland Mus 44:659–665

    Google Scholar 

  • Wilson HV (1910) A study of some epitheloid membranes in monaxonid sponges. J Exp Zool 9:536–571

    Google Scholar 

  • Xue H (1998) Identification of major phylogenetic branches of inhibitory ligand-gated channel receptors. J Mol Evol 47:323–333

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Hans-Dieter Görtz and Franz Brümmer for their support of our research, Isabel Koch and Kai-Uwe Genzel for providing and maintaining sponges in the zoological Garden Wilhelma, Wolfgang Hauber for discussion on experimental design, Birgit Nickel and Markus Götz for discussion of results, Isabel Heim and Carsten Wolf for technical assistance with the aquarium. Our work was partly supported by the German Federal Ministry of Education and Research (BMBF) through the project Center of Excellence BIOTECmarin (F 0345D), by the Ministry of Science, Research and the Arts of the State of Baden-Württemberg and the University of Stuttgart. The experiments conducted herein comply with the current laws of Germany where they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Nickel.

Additional information

K. Ellwanger and A. Eich contributed equally and designed and performed experiments, analysed data and revised the paper, M. Nickel designed the study and experiments, analysed data, prepared the figures, wrote and revised the paper.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellwanger, K., Eich, A. & Nickel, M. GABA and glutamate specifically induce contractions in the sponge Tethya wilhelma . J Comp Physiol A 193, 1–11 (2007). https://doi.org/10.1007/s00359-006-0165-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-006-0165-y

Keywords

Navigation