Skip to main content
Log in

Riboflavin-UVA-Crosslinking beim Keratokonus

Riboflavin UVA cross-linking for keratoconus

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Beim Keratokonus handelt es sich um eine progressive, ektatische Erkrankung der Hornhaut. Bis vor wenigen Jahren konnte durch Brillen- bzw. Kontaktlinsenanpassung nur symptomatisch behandelt werden, und auch eine Keratoplastik oder intrakorneale Ringsegmente können nicht zu einer Heilung führen. Das Riboflavin-UVA-Crosslinking (CXL) kann zwar ebenfalls keine Heilung bewirken, soll aber die Progression stoppen. Das Wirkprinzip besteht in einer photochemischen Reaktion von Riboflavin und UVA-Licht, wodurch im Stroma freie Sauerstoffradikale entstehen, die zu kovalenten Verbindungen der Kollagenfibrillen führen. Diese Versteifung der Kornea soll die Progression des Keratokonus stoppen. Nach ersten Berichten Ende der 1990er-Jahre kam es in den vergangenen Jahren zu einer zunehmenden Verbreitung dieser Therapie. Zahlreiche Fallserien weisen darauf hin, dass die Progression bei manchen Patienten aufgehalten werden kann. Allerdings gibt es bisher kaum randomisierte, kontrollierte Multicenterstudien, die eine hohe Evidenz nachweisen. In diesem Beitrag soll auf die aktuelle Studienlage zur Effektivität des CXL, auf die Indikationsstellung sowie auf neue Entwicklungen eingegangen werden.

Abstract

Keratoconus is a progressive, ectatic disease of the cornea leading to thinning and highly irregular astigmatism. Until recently all treatment options, such as prescription of glasses or contact lenses were symptomatic and neither keratoplasty nor the implantation of intracorneal rings can heal the disease. Riboflavin ultraviolet A (UVA) collagen cross-linking (CXL) cannot heal keratoconus either but promises to halt the progression. The therapeutic principle is a photochemical reaction of riboflavin and UVA light leading to free oxygen radicals in the corneal stroma that induce covalent linking of the collagen fibrils. This stiffening effect should stop the progression. After the first reports at the end of the 1990s the treatment was widely used and many case series show that CXL can be effective in stopping disease progression in some patients. However, randomized, controlled multicenter trials showing high evidence of the treatment effectiveness are rare. This report includes a review of the literature regarding treatment effectiveness, indications and new developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Sugar J, Macsai MS (2012) What causes keratoconus? Cornea 31(6):716–719

    Article  PubMed  Google Scholar 

  2. McMahon TT, Edrington TB, Szczotka-Flynn L et al (2006) Longitudinal changes in corneal curvature in keratoconus. Cornea 25(3):296–305

    Article  PubMed  Google Scholar 

  3. Choi JA, Kim M-S (2012) Progression of keratoconus by longitudinal assessment with corneal topography. Invest Ophthalmol Vis Sci 53(2):927–935

    Article  PubMed  Google Scholar 

  4. Tuft SJ, Moodaley LC, Gregory WM et al (1994) Prognostic factors for the progression of keratoconus. Ophthalmology 101(3):439–447

    PubMed  CAS  Google Scholar 

  5. Spörl E, Huhle M, Kasper M, Seiler T (1997) Increased rigidity of the cornea caused by intrastromal cross-linking. Ophthalmologe 94(12):902–906

    Article  PubMed  Google Scholar 

  6. Wollensak G, Spörl E, Seiler T (2003) Treatment of keratoconus by collagen cross linking. Ophthalmologe 100(1):44–49

    Article  PubMed  CAS  Google Scholar 

  7. Raiskup-Wolf F, Hoyer A, Spoerl E, Pillunat LE (2008) Collagen crosslinking with riboflavin and ultraviolet-A light in keratoconus: long-term results. J Cataract Refract Surg 34(5):796–801

    Article  PubMed  Google Scholar 

  8. Koller T, Mrochen M, Seiler T (2009) Complication and failure rates after corneal crosslinking. J Cataract Refract Surg 35(8):1358–1362

    Article  PubMed  Google Scholar 

  9. Wittig-Silva C, Whiting M, Lamoureux E et al (2008) A randomized controlled trial of corneal collagen cross-linking in progressive keratoconus: preliminary results. J Refract Surg 24(7):S720–S725

    PubMed  Google Scholar 

  10. O’Brart DPS, Chan E, Samaras K et al (2011) A randomised, prospective study to investigate the efficacy of riboflavin/ultraviolet A (370 nm) corneal collagen cross-linkage to halt the progression of keratoconus. Br J Ophthalmol 95(11):1519–1524

    Article  Google Scholar 

  11. Gore DM, Shortt AJ, Allan BD (2013) New clinical pathways for keratoconus. Eye (Lond) 27(3):329–339

    Google Scholar 

  12. Böhringer D, Böhringer S, Poxleitner K et al (2010) Long-term graft survival in penetrating keratoplasty: the biexponential model of chronic endothelial cell loss revisited. Cornea 29(10):1113–1117

    Article  PubMed  Google Scholar 

  13. Böhringer D, Schindler A, Reinhard T (2006) Satisfaction with penetrating keratoplasty. Results of a questionnaire census. Ophthalmologe 103(8):677–681

    Article  PubMed  Google Scholar 

  14. Raiskup F, Kissner A, Hoyer A et al (2010) Corneal scar development after cross-linking in keratoconus. Ophthalmologe 107(9):837–842

    Article  PubMed  CAS  Google Scholar 

  15. Eberwein P, Auw-Hädrich C, Birnbaum F et al (2008) Corneal melting after cross-linking and deep lamellar keratoplasty in a keratoconus patient. Klin Monatsbl Augenheilkd 225(1):96–98

    Article  PubMed  CAS  Google Scholar 

  16. Bödemann M, Kohnen T (2012) Ulcus corneae durch MRSA nach UV/Riboflavin-Crosslinking bei Keratokonus. Ophthalmologe 109(11):1112–1114

    Article  PubMed  Google Scholar 

  17. Messmer EM, Meyer P, Herwig MC et al (2013) Morphological and immunohistochemical changes after corneal cross-linking. Cornea 32(2):111–117

    Article  PubMed  Google Scholar 

  18. Wollensak G, Mazzotta C, Kalinski T, Sel S (2011) Limbal and conjunctival epithelium after corneal cross-linking using riboflavin and UVA. Cornea 30(12):1448–1454

    Article  PubMed  Google Scholar 

  19. Vimalin J, Gupta N, Jambulingam M et al (2012) The effect of riboflavin-UV-A treatment on corneal limbal epithelial cells – a study on human cadaver eyes. Cornea 31(9):1052–1059

    Article  PubMed  Google Scholar 

  20. Caporossi A, Mazzotta C, Baiocchi S et al (2011) Age-related long-term functional results after riboflavin UV A corneal cross-linking. J Ophthalmol (http://www.ncbi.nlm.nih.gov/pubmed/?term=Caporossi+A%2C+Mazzotta+C%2C+Baiocchi+S+et+al+%282011%29+Age-related+long-term+functional+results+after+riboflavin+UV+A+corneal+cross-linking.+J+Ophthalmol#)

  21. Vinciguerra P, Albé E, Frueh BE et al (2012) Two-year corneal cross-linking results in patients younger than 18 years with documented progressive keratoconus. Am J Ophthalmol 154(3):520–526

    Article  PubMed  Google Scholar 

  22. Spoerl E, Mrochen M, Sliney D et al (2007) Safety of UVA-riboflavin cross-linking of the cornea. Cornea 26(4):385–389

    Article  PubMed  Google Scholar 

  23. Holopainen JM, Krootila K (2011) Transient corneal thinning in eyes undergoing corneal cross-linking. Am J Ophthalmol 152(4):533–536

    Article  PubMed  Google Scholar 

  24. Kaya V, Utine CA, Yılmaz ÖF (2012) Intraoperative corneal thickness measurements during corneal collagen cross-linking with hypoosmolar riboflavin solution in thin corneas. Cornea 31(5):486–490

    Article  PubMed  Google Scholar 

  25. Kymionis GD, Portaliou DM, Diakonis VF et al (2012) Corneal collagen cross-linking with riboflavin and ultraviolet-A irradiation in patients with thin corneas. Am J Ophthalmol 153(1):24–28

    Article  PubMed  CAS  Google Scholar 

  26. Lange C, Böhringer D, Reinhard T (2012) Corneal endothelial loss after crosslinking with riboflavin and ultraviolet-A. Graefes Arch Clin Exp Ophthalmol 250(11):1689–1691

    Article  PubMed  Google Scholar 

  27. Raiskup F, Spoerl E (2011) Corneal cross-linking with hypo-osmolar riboflavin solution in thin keratoconic corneas. Am J Ophthalmol 152(1):28–32

    Article  PubMed  CAS  Google Scholar 

  28. Leccisotti A, Islam T (2010) Transepithelial corneal collagen cross-linking in keratoconus. J Refract Surg 26(12):942–948

    Article  PubMed  Google Scholar 

  29. Filippello M, Stagni E, O’Brart D (2012) Transepithelial corneal collagen crosslinking: bilateral study. J Cataract Refract Surg 38(2):283–291

    Article  PubMed  Google Scholar 

  30. Schumacher S, Oeftiger L, Mrochen M (2011) Equivalence of biomechanical changes induced by rapid and standard corneal cross-linking, using riboflavin and ultraviolet radiation. Invest Ophthalmol Vis Sci 52(12):9048–9052

    Article  PubMed  Google Scholar 

  31. Kanellopoulos J (2012) Long term results of a prospective randomized bilateral eye comparison trial of higher fluence, shorter duration ultraviolet A radiation, and riboflavin collagen cross linking for progressive keratoconus. Clin Ophthalmol 6:97–101

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seinen Koautor an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Maier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maier, P., Reinhard, T. Riboflavin-UVA-Crosslinking beim Keratokonus. Ophthalmologe 110, 818–822 (2013). https://doi.org/10.1007/s00347-013-2820-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-013-2820-3

Schlüsselwörter

Keywords

Navigation