Skip to main content
Log in

Tunable plasmonic band-pass filter based on Fabry–Perot graphene nanoribbons

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A plasmonic band-pass filter (BPF) structure is designed and proposed in this research. The filter structure includes two graphene nanoribbon (GNR) waveguides laterally coupled to three perpendicular GNRs that forms a Fabry–Perot resonator (FPR). The transmission spectrum of the proposed structure can be tuned in an efficient and flexible fashion by making adjustments on the overall geometrical structure and its chemical potential, as well. Geometry can be modified in the design step, even as a real-time controlling voltage can be applied as a chemical potential tuner. The coupling distances between GNR waveguides and GNRs of the FPR and also coupling distances among GNRs of FPR themselves strongly affect the transmission spectrum and bandwidth characteristics of the BPF. Transmission spectrum with one, two, or three peaks can be achieved by adjusting the distances between GNRs of the FPR, even as other geometrical adjustments and/or chemical potential tuning shifts the spectrum to the desired frequency range. The results achieved by 3D finite-difference time-domain (3D-FDTD) method verify the capability of the proposed structure to be applied in applications used in plasmonic and nano-optoelectronics devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.M. Mittleman, Nat. Photonics 7, 666 (2013)

    Article  ADS  Google Scholar 

  2. D. Correas-Serrano, J.S. Gomez-Diaz, J. Perruisseau-Carrier, A. Alvarez-Melcon, IEEE Trans. Nanotechnol. 13, 1145 (2014)

    Article  ADS  Google Scholar 

  3. A. Tavousi, A. Rostami, G. Rostami, M. Dolatyari, J. Lightwave Technol. 33, 4640 (2015)

    Article  ADS  Google Scholar 

  4. D. Wu, N. Fang, C. Sun, X. Zhang, W.J. Padilla, D.N. Basov, D.R. Smith, S.D. Schultz, Appl. Phys. Lett. 83, 201 (2003)

    Article  ADS  Google Scholar 

  5. S. Yokogawa, S.P. Burgos, H.A. Atwater, Nano Lett. 12, 4349 (2012)

    Article  ADS  Google Scholar 

  6. B. Yun, G. Hu, Y. Cui, J. Phys. D Appl. Phys. 43, 385102 (2010)

    Article  ADS  Google Scholar 

  7. M. Danaeifar, N. Granpayeh, A. Mohammadi, A. Setayesh, Appl. Opt. 52, E68 (2013)

    Article  ADS  Google Scholar 

  8. H.J. Li, L.L. Wang, B. Sun, Z.R. Huang, X. Zhai, Plasmonics 11, 87 (2016)

    Article  Google Scholar 

  9. M. Jablan, H. Buljan, M. Soljačić, Phys. Rev. B 80, 245435 (2009)

    Article  ADS  Google Scholar 

  10. M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev. 110, 132 (2009)

    Article  Google Scholar 

  11. W. Choi, I. Lahiri, R. Seelaboyina, Y.S. Kang, Crit. Rev. Solid State Mater. Sci. 35, 52 (2010)

    Article  ADS  Google Scholar 

  12. A. Grigorenko, M. Polini, K. Novoselov, Nat. Photonics 6, 749 (2012)

    Article  ADS  Google Scholar 

  13. C. Riedl, C. Coletti, U. Starke, J. Phys. D Appl. Phys. 43, 374009 (2010)

    Article  Google Scholar 

  14. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  15. A. Vakil, N. Engheta, Science 332, 1291 (2011)

    Article  ADS  Google Scholar 

  16. S. He, X. Zhang, Y. He, Opt. Express 21, 30664 (2013)

    Article  ADS  Google Scholar 

  17. T. Low, P. Avouris, ACS Nano 8, 1086 (2014)

    Article  Google Scholar 

  18. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. Liang, A. Zettl, Y.R. Shen, F. Wang, Nat. Nanotechnol. 6, 630 (2011)

    Article  ADS  Google Scholar 

  19. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003)

    Article  ADS  Google Scholar 

  20. M. Dragoman, D. Dragoman, F. Coccetti, R. Plana, A. Muller, J. Appl. Phys. 105, 054309 (2009)

    Article  ADS  Google Scholar 

  21. D. Gunlycke, C.T. White, Phys. Rev. Lett. 106, 136806 (2011)

    Article  ADS  Google Scholar 

  22. J. Nakabayashi, D. Yamamoto, S. Kurihara, Phys. Rev. Lett. 102, 066803 (2009)

    Article  ADS  Google Scholar 

  23. H. Lu, C. Zeng, Q. Zhang, X. Liu, M.M. Hossain, P. Reineck, M. Gu, Sci. Rep. 5, 8443 (2015)

    Article  ADS  Google Scholar 

  24. R. Filter, M. Farhat, M. Steglich, R. Alaee, C. Rockstuhl, F. Lederer, Opt. Express 21, 3737 (2013)

    Article  ADS  Google Scholar 

  25. Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, J. Phys. Chem. C 113, 13103 (2009)

    Article  Google Scholar 

  26. J. Tao, X. Yu, B. Hu, A. Dubrovkin, Q.J. Wang, Opt. Lett. 39, 271 (2014)

    Article  ADS  Google Scholar 

  27. H. Lu, Appl. Phys. B 118, 61 (2015)

    Article  ADS  Google Scholar 

  28. H. Zhuang, F. Kong, K. Li, S. Sheng, Appl. Opt. 54, 2558 (2015)

    Article  ADS  Google Scholar 

  29. H. Zhuang, S. Sheng, F. Kong, K. Li, Y. Wang, Opt. Commun. 381, 396 (2016)

    Article  ADS  Google Scholar 

  30. S. Sheng, K. Li, F. Kong, H. Zhuang, Opt. Commun. 336, 189 (2015)

    Article  ADS  Google Scholar 

  31. L. Zhang, J. Yang, X. Fu, M. Zhang, Appl. Phys. Lett. 103, 163114 (2013)

    Article  ADS  Google Scholar 

  32. J. Wang, W.B. Lu, X.B. Li, Z.H. Ni, T. Qiu, J. Phys. D Appl. Phys. 47, 135106 (2014)

    Article  ADS  Google Scholar 

  33. P. Liu, W. Cai, L. Wang, X. Zhang, J. Xu, Appl. Phys. Lett. 100, 153111 (2012)

    Article  ADS  Google Scholar 

  34. Y. Gao, G. Ren, B. Zhu, L. Huang, H. Li, B. Yin, S. Jian, Plasmonics 11, 291 (2016)

    Article  Google Scholar 

  35. B. Vasić, M.M. Jakovljević, G. Isić, R. Gajić, Appl. Phys. Lett. 103, 011102 (2013)

    Article  ADS  Google Scholar 

  36. H.-J. Li, L.-L. Wang, B. Sun, Z.-R. Huang, X. Zhai, J. Appl. Phys. 116, 224505 (2014)

    Article  ADS  Google Scholar 

  37. X. Han, T. Wang, X. Li, S. Xiao, Y. Zhu, Opt. Express 23, 31945 (2015)

    Article  ADS  Google Scholar 

  38. M. Janfaza, M.A. Mansouri-Birjandi, Appl. Opt. 52, 8184 (2013)

    Article  ADS  Google Scholar 

  39. J.S. Gómez-Díaz, J. Perruisseau-Carrier, Opt. Express 21, 15490 (2013)

    Article  ADS  Google Scholar 

  40. P.Y. Chen, A. Alù, ACS Nano 5, 5855 (2011)

    Article  Google Scholar 

  41. B. Wang, X. Zhang, F.J. García-Vidal, X. Yuan, J. Teng, Phys. Rev. Lett. 109, 073901 (2012)

    Article  ADS  Google Scholar 

  42. B. Wang, X. Zhang, X. Yuan, J. Teng, Appl. Phys. Lett. 100, 131111 (2012)

    Article  ADS  Google Scholar 

  43. A.Y. Nikitin, F. Guinea, F. García-Vidal, L. Martín-Moreno, Phys. Rev. B 84, 161407 (2011)

    Article  ADS  Google Scholar 

  44. X. Yan, L. Yuan, Y. Wang, T. Sang, G. Yang, AIP Adv. 6, 085301 (2016)

    Article  ADS  Google Scholar 

  45. Y. Feng, Y. Liu, Y. Shi, X. Wang, D. Dong, J. Phys. D Appl. Phys. 50, 185101 (2017)

    Article  ADS  Google Scholar 

  46. X. Zhu, W. Yan, N.A. Mortensen, S. Xiao, Opt. Express 21, 3486 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Mansouri-Birjandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janfaza, M., Mansouri-Birjandi, M.A. & Tavousi, A. Tunable plasmonic band-pass filter based on Fabry–Perot graphene nanoribbons. Appl. Phys. B 123, 262 (2017). https://doi.org/10.1007/s00340-017-6838-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6838-0

Keywords

Navigation