Skip to main content
Log in

Tunable Plasmonic Filter Based on Graphene Split-Ring

  • Published:
Plasmonics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We propose in this paper a tunable plasmonic filter based on graphene split-ring (GSR) resonator. It is found the resonances could be classified into two categories, i.e., even-parity and odd-parity mode according to the symmetry of field profile in GSR. The coupling between graphene nanoribbon and GSR is GSR-orientation sensitive, and the odd-parity mode presents a greater sensitivity due to its asymmetric field profile. The transmission spectrum of the proposed filter could be efficiently modified by tuning the shape, orientation, and Fermi level of GSR. The proposed structure can be applied in the tunable ultra-compact graphene plasmonic devices for future nanoplasmonic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4(2):83–91. doi:10.1038/nphoton.2009.282

    Article  CAS  Google Scholar 

  2. Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6(11):749–758. doi:10.1038/nphoton.2012.262

    Article  CAS  Google Scholar 

  3. Sensale-Rodriguez B, Yan R, Zhu M, Jena D, Liu L, Grace Xing H (2012) Efficient terahertz electro-absorption modulation employing graphene plasmonic structures. Appl Phys Lett 101(26):261115. doi:10.1063/1.4773374

    Article  Google Scholar 

  4. Tao J, Yu X, Hu B, Dubrovkin A, Wang QJ (2014) Graphene-based tunable plasmonic Bragg reflector with a broad bandwidth. Opt Lett 39(2):271. doi:10.1364/ol.39.000271

    Article  CAS  Google Scholar 

  5. Zhang L, Yang J, Fu X, Zhang M (2013) Graphene disk as an ultra compact ring resonator based on edge propagating plasmons. Appl Phys Lett 103(16):163114. doi:10.1063/1.4826515

    Article  Google Scholar 

  6. Li H-J, Wang L-L, Liu J-Q, Huang Z-R, Sun B, Zhai X (2013) Investigation of the graphene based planar plasmonic filters. Appl Phys Lett 103(21):211104. doi:10.1063/1.4831741

    Article  Google Scholar 

  7. Ooi KJ, Chu HS, Bai P, Ang LK (2014) Electro-optical graphene plasmonic logic gates. Opt Lett 39(6):1629–1632. doi:10.1364/OL.39.001629

    Article  CAS  Google Scholar 

  8. Liu P, Cai W, Wang L, Zhang X, Xu J (2012) Tunable terahertz optical antennas based on graphene ring structures. Appl Phys Lett 100(15):153111. doi:10.1063/1.3702819

    Article  Google Scholar 

  9. He S, Zhang X, He Y (2013) Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI. Opt Express 21(25):30664. doi:10.1364/oe.21.030664

    Article  Google Scholar 

  10. Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang X, Zettl A, Shen YR, Wang F (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6(10):630–634. doi:10.1038/nnano.2011.146

    Article  CAS  Google Scholar 

  11. Gao W, Shu J, Qiu C, Xu Q (2012) Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano 6(9):7806–7813. doi:10.1021/nn301888e

    Article  CAS  Google Scholar 

  12. Nikitin AY, Alonso-Gonzalez P, Hillenbrand R (2014) Efficient coupling of light to graphene plasmons by compressing surface polaritons with tapered bulk materials. Nano Lett 14(5):2896–2901. doi:10.1021/nl500943r

    Article  CAS  Google Scholar 

  13. Smirnova DA, Shadrivov IV, Miroshnichenko AE, Smirnov AI, Kivshar YS (2014) Second-harmonic generation by a graphene nanoparticle. Phys Rev B 90(3). doi:10.1103/PhysRevB.90.035412

  14. Zhou X, Zhang T, Chen L, Hong W, Li X (2014) A graphene-based hybrid plasmonic waveguide with ultra-deep subwavelength confinement. J Lightwave Technol 32(21):3597–3601. doi:10.1109/jlt.2014.2350487

    Google Scholar 

  15. Zhuang H, Kong F, Li K, Sheng S (2015) Plasmonic bandpass filter based on graphene nanoribbon. Appl Opt 54(10):2558. doi:10.1364/ao.54.002558

    Article  CAS  Google Scholar 

  16. Papasimakis N, Thongrattanasiri S, Zheludev NI, García de Abajo FJ (2013) The magnetic response of graphene split-ring metamaterials. Sci Appl 2(7), e78. doi:10.1038/lsa.2013.34

    Google Scholar 

  17. Christensen J, Manjavacas A, Thongrattanasiri S, Koppens FH, de Abajo FJ (2012) Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 6(1):431–440. doi:10.1021/nn2037626

    Article  CAS  Google Scholar 

  18. Fang Z, Thongrattanasiri S, Schlather A, Liu Z, Ma L, Wang Y, Ajayan PM, Nordlander P, Halas NJ, Garcia de Abajo FJ (2013) Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano 7(3):2388–2395. doi:10.1021/nn3055835

    Article  CAS  Google Scholar 

  19. Li Q, Wang T, Su Y, Yan M, Qiu M (2010) Coupled mode theory analysis of mode-splitting in coupled cavity system. Opt Express 18(8):8367–8382. doi:10.1364/OE.18.008367

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (no. 2015YJS018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guobin Ren.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Ren, G., Zhu, B. et al. Tunable Plasmonic Filter Based on Graphene Split-Ring. Plasmonics 11, 291–296 (2016). https://doi.org/10.1007/s11468-015-0050-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0050-z

Keywords

Navigation