Skip to main content
Log in

Propagation of an Airy-Gaussian beam in defected photonic lattices

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We investigate numerically that a finite Airy-Gaussian (AiG) beam varies its trajectory and shape in defected photonic lattices. Propagation properties and beam self-bending are controlled with modulation depth and period of photonic lattices, positive and negative defects, beam distribution factor and nonlinearities. For positive defects, the pseudo-period oscillation and localization of the AiG beam may form under a certain condition, while the beam diffuses in negative defects. Moreover, the solitons may appear during the propagation when the self-focusing nonlinearity is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.V. Berry, N.L. Balazs, Nonspreading wave-packets. Am. J. Phys. 47(3), 264–267 (1979)

    Article  ADS  Google Scholar 

  2. G.A. Siviloglou, D.N. Christodoulides, Accelerating finite energy Airy beams. Opt. Lett. 32, 979–981 (2007)

    Article  ADS  Google Scholar 

  3. G.A. Siviloglou, J. Broky, A. Dogariu, D.N. Christodoulides, Observation of accelerating Airy beams. Phys. Rev. Lett. 99, 213901 (2007)

    Article  ADS  Google Scholar 

  4. G.A. Siviloglou, J. Broky, A. Dogariu, D.N. Christodoulides, Ballistic dynamics of Airy beams. Opt. Lett. 33, 207–209 (2008)

    Article  ADS  Google Scholar 

  5. M. Mazilu1, D.J. Stevenson, F. Gunn-Moore, K. Dholakia, Light beats the spread: “non-diffracting” beams. Laser Photon. Rev. 4, 529–547 (2010)

  6. J. Broky, G.A. Siviloglou, A. Dogariu, D.N. Christodoulides, Self-healing properties of optical Airy beams. Opt. Express 16, 12880–12891 (2008)

    Article  ADS  Google Scholar 

  7. J. Baumgartl, M. Mazilu, K. Dholakia, Optically mediated particle clearing using Airy wavepackets. Nat. Photon. 2, 675–678 (2008)

    Article  ADS  Google Scholar 

  8. P. Chong, W. Renninger, D.N. Christodoulides, Accelerating finite energy Airy beams. Nat. Photon. 4, 103–106 (2010)

    Article  ADS  Google Scholar 

  9. P. Polynkin, M. Kolesik, J.V. Moloney, G.A. Siviloglou, D.N. Christodoulides, Curved plasma channel generation using ultraintense Airy beams. Science 324, 229–232 (2009)

    Article  ADS  Google Scholar 

  10. P. Polynkin, M. Kolesik, J.V. Moloney, Filamentation of femtosecond laser Airy beams in water. Phys. Rev. Lett. 103, 123902 (2009)

    Article  ADS  Google Scholar 

  11. J.X. Li, W.P. Zhang, J.G. Tian, Vacuum laser-driven acceleration by Airy beams. Opt. Express 18, 7300–7306 (2010)

    Article  ADS  Google Scholar 

  12. N.M. Lučić, B.M. Bokić, D.Ž. Grujić, D.V. Pantelić, B.M. Jelenković, A. Piper, D.M. Jović, D.V. Timotijević, Defect-guided Airy beams in optically induced waveguide arrays. Phys. Rev. A 88, 063815 (2013)

    Article  ADS  Google Scholar 

  13. A. Piper, D.V. Timotijević, D.M. Jović, Acceleration control of Airy beams with optically induced photonic lattices. Phys. Scr. T157, 014023 (2013)

    Article  ADS  Google Scholar 

  14. F. Diebel, B.M. Bokić, M. Boguslawski, A. Piper, D.V. Timotijević, D.M. Jović, C. Denz, Control of Airy-beam self-acceleration by photonic lattices. Phys. Rev. A 90, 033802 (2014)

    Article  ADS  Google Scholar 

  15. Y. Hu, S. Huang, P. Zhang, C.B. Lou, J.J. Xu, Z.G. Chen, Persistence and breakdown of Airy beams driven by an initial nonlinearity. Opt. Lett. 35, 3952C–3954 (2010)

    Article  ADS  Google Scholar 

  16. I. Kaminer, M. Segev, D.N. Christodoulides, Self-accelerating self-trapped optical beams. Phys. Rev. Lett. 33, 207–209 (2008)

    Google Scholar 

  17. A. Lotti, D. Faccio, A. Couairon, D.G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, S. Tzortzakis, Stationary nonlinear Airy beams. Phys. Rev. A 84, 021807(R) (2011)

    Article  ADS  Google Scholar 

  18. I. Dolev, I. Kaminer, A. Shapira, M. Segev, A. Arie, Experimental observation of self-accelerating beams in quadratic nonlinear media. Phys. Rev. Lett. 108, 113903 (2012)

    Article  ADS  Google Scholar 

  19. Z.Y. Ye, S. Liu, C.B. Lou, P. Zhang, Y. Hu, D.H. Song, J.L. Zhao, Z.G. Chen, Acceleration control of Airy beams with optically induced refractive-index gradient. Opt. Lett. 36, 3230–3232 (2011)

    Article  ADS  Google Scholar 

  20. M.A. Bandres, J.C. Gutiérrez-Vega, Airy-Gauss beams and their transformation by paraxial optical systems. Opt. Express 15, 16719–16728 (2007)

    Article  ADS  Google Scholar 

  21. D.M. Deng, H. Li, Propagation properties of Airy-Gaussian beams. Appl. Phys. B 106, 677–681 (2012)

    Article  ADS  Google Scholar 

  22. C.D. Chen, B. Chen, X. Peng, D.M. Deng, Propagation of Airy-Gaussian beam in Kerr medium. J. Opt. UK 17, 035504 (2015)

    Article  ADS  Google Scholar 

  23. L. Ez-Zariy, S. Hennani, H. Nebdi, A. Belafhal, Propagation characteristics of Airy-Gaussian beams passing through a misaligned optical system with finite aperture. Opt. Photon. J. 4, 325–336 (2014)

    Article  ADS  Google Scholar 

  24. Y.M. Zhou, G.Q. Zhou, G.Y. Ru, Properties of Airy-Gauss beams in the fractional fourier transform plane. Prog. Electromagn. Res. 40, 143–151 (2014)

    Article  Google Scholar 

  25. J. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems (SIAM, Philadelphia, 2010)

    Book  MATH  Google Scholar 

  26. G.P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 2001)

    MATH  Google Scholar 

  27. A. Bahabad, N. Voloch, A. Arie, Unveiling quasiperiodicity through nonlinear wave mixing in periodic media. Phys. Rev. Lett. 98, 205501 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Guangdong Province of China (Grant No. 2016A030313747) and the National Natural Science Foundation of China (Grant No. 11547212).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiwei Shi or Huagang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Xue, J., Zhu, X. et al. Propagation of an Airy-Gaussian beam in defected photonic lattices. Appl. Phys. B 123, 159 (2017). https://doi.org/10.1007/s00340-017-6737-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6737-4

Keywords

Navigation