Skip to main content
Log in

Controlling wide-spectrum fluorescence on Au/ZnSe multi-heterojunction

  • Published:
Applied Physics A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We present a wide-spectrum photoluminescence (PL) enhancement effect on the multi-heterojunction of ZnSe quantum dots and gold nanoparticles (NPs). The Au/ZnSe heterojunction is fabricated using Langmuir–Blodgett assembling method. The photoluminescence is measured using a 150 nm aperture ultraviolet laser beam spot of a scanning near-field optical microscope. The enhancement of band-gap emission and defect PL, the quenching of the fluorescence are, respectively, observed, which depend on the distance of gold NPs and ZnSe quantum dots. The enhancement of the band-gap emission is ascribed to the local field enhancement induced by the resonant coupling between the excitons of ZnSe and the surface plasmons of gold NPs. The enhancement of the defect PL is a result of the electron trapped by the defect states in the process of transporting electrons from ZnSe QDs to gold NPs due to the increase of the built-in electric field to hinder the electron transfer to gold nanoparticles. In addition, the quenching of the fluorescence is due to the electron transfer from ZnSe quantum dots to gold NPs. Our result opens the possibility of applications in forming uniform optoelectronic heterojunction and in controlling fluorescent efficiency of PL devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F.L. Li, H. You, X. Li, J. Gu, X. Wei, C. Jin, Q. Nie, Q. Zhang, Li, Emission tunable CdZnS/ZnSe core/shell quantum dots for white light emitting diodes. J. Lumin. 192, 867–874 (2017)

    Article  Google Scholar 

  2. S. Coe, W.-K. Woo, M.G. Bawendi, V. Bulovic, Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002)

    Article  ADS  Google Scholar 

  3. J.H. Bang, P.V. Kamat, quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano, 3, 1467–1476 (2009)

    Article  Google Scholar 

  4. F. Huang, J. Hou, Q.F. Zhang, Y. Wang, R.C. Masse, S.L. Peng, H.L. Wang, J.S. Liu, G.Z. Cao, Doubling the power conversion efficiency in CdS/CdSe quantum dot sensitized solar cells with a ZnSe passivation layer. Nano Energy 26, 114–122 (2016)

    Article  Google Scholar 

  5. P.V. Kamat, Quantum dot solar cells. The next big thing in photovoltaics. J. Phys. Chem. Lett. 4(6), 908–918 (2013)

    Article  Google Scholar 

  6. A. Rumberg, C. Sommerhalter, M. Toplak et al., ZnSe thin films grown by chemical vapour deposition for application as buffer layer in CIGSS solar cells. Thin Solid Films 36, 172–176 (2000)

    Article  Google Scholar 

  7. M.B. Saab, E. Estephan, T. Cloitre et al., Peptide route functionalization of ZnSe crystals preserves activity and structure of proteins while adsorption. J. Phys. Chem. C 114(43), 18509–185158 (2010)

    Article  Google Scholar 

  8. H. Wenisch, M. Fehrer, M. Klude et al., Internal photoluminescence in ZnSe homoepitaxy and application in blue green orangemixed-color light-emitting diodes. J. Cryst. Growth 214(11), 1075–1079 (2010)

    ADS  Google Scholar 

  9. K. Okamoto, I. Nikl, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat. Mater. 3(9), 601–605 (2004)

    Article  ADS  Google Scholar 

  10. N.E. Hecker, R.A. Hopfel, N. Sawaki, T. Maier, G. Strasser, Surface plasmon-enhanced hotoluminescence from a single quantum well. Appl. Phys. Lett. 75(11), 1577–1579 (1999)

    Article  ADS  Google Scholar 

  11. C.Y. Chen, C.F. Huang, J.Y. Wang, Y.C. Lu, Y.W. Kiang, C.C. Yang, Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure. Appl. Phys. Lett. 92(1), 013108-013108-3 (2008)

    ADS  Google Scholar 

  12. A. Fadil, D. Iida, Y. Chen, Y. Ou, S. Kamiyama, H. Ou, Influence of near-field coupling from Ag surface plasmons on InGaN/GaN quantum-well photoluminescence. J. Lumin. 175, 213–216 (2016)

    Article  Google Scholar 

  13. M.Y. Wang, M.D. Ye, J. Iocozzia, C.J. Lin, Z.Q. Lin, Plasmon-mediated solar energy conversion via photocatalysis in noble metal/semiconductor composites. Adv. Sci. 3(6), 1600024 (2016)

    Article  Google Scholar 

  14. S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97(1), 017402 (2006)

    Article  ADS  Google Scholar 

  15. O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, M. Artemyev, Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Lett. 2(12), 1449–1452 (2002)

    Article  ADS  Google Scholar 

  16. K. Saha, S.S. Agasti, C. Kim, X.N. Li, V.M. Rotello, Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112(5), 2739–2779 (2012)

    Article  Google Scholar 

  17. T. Mokari, selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304, 1787–1790 (2004)

    Article  ADS  Google Scholar 

  18. R. Costi, A.E. Saunders, E. Elmalem, A. Salant, U.Visible Banin, Light-induced charge retention and photocatalysis withhybrid CdSe-Au nanodumbbells. Nano Lett. 8(2), 637–641 (2008)

    Article  ADS  Google Scholar 

  19. B. Gao, Y. Lin, S. Wei, J. Zeng, Y. Liao, L. Chen, D. Goldfeld, X. Wang, Y. Luo, Z. Dong et al., Charge transfer and retention in directly coupled Au-CdSe nanohybrids. Nano Res. 5(2), 88–98 (2012)

    Article  Google Scholar 

  20. Y.-P. Hsieh, C.-T. Liang, Y.-F. Chen, C.-W. Lai, P.-T. Chou, Mechanism of giant enhancement of light emission from Au/CdSe nanocomposites. Nanotechnology 18(41), 415707 (2007)

    Article  Google Scholar 

  21. T. Pons, I.L. Medintz, K.E. Sapsford, S. Higashiya, A.F. Grimes, D.S. English, H. Mattoussi, On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles. Nano Lett. 7(10), 3157 (2007)

    Article  ADS  Google Scholar 

  22. E.V. Shevchenko, M. Ringler, A. Schwemer, D.V. Talapin, T.A. Klar, A.L. Rogach, J. Feldmann, A.P. Alivisatos, Self-assembled binary superlattices of CdSe and Au nanocrystals and their fluorescence properties. J. Am. Chem. Soc. 130, 3274–3275 (2008)

    Article  Google Scholar 

  23. Z. Bai, L. Hao, Z. Huang, S. Qin, Z. Zhang, Enhancement effect of defect fluorescence of ZnSe quantum dots on a heterojuction of ZnSe quantum dots and gold nanoparticles. Methods Appl. Fluoresc. 5, 045001 (2017)

    Article  ADS  Google Scholar 

  24. Z. Deng, L. Cao, F. Tang, B. Zou, A new route to zinc-blende CdSe nanocrystals: mechanism and synthesis. J. Phys. Chem. B 109(35), 16671–16675 (2005)

    Article  Google Scholar 

  25. L. Qu, W.W. Yu, X. Peng, In situ observation of the nucleation and growth of CdSe nanocrystals. Nano Lett. 4(3), 465–469 (2004)

    Article  ADS  Google Scholar 

  26. L. Hao, Z. Bai, Z. Huang, S. Liao, Z. Zhang, Research of fluorescent spectra of oleic acid-stabilized ZnSe nanocrystals based on UV light modification. Appl. Phys. A 122(11), 967 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research work was partially supported by National Natural Science Foundation of China (No. 61741505, 11204046), International Scientific and Technological Cooperation of China (No. 2014DFA00670), Guizhou province science and technology Projects (No. QKHZ [2017]2887), The central government will guide local science and technology development Projects (No. QKZYD[2017]4004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Man Peng or Zhengping Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, M., Bai, Z., Li, X. et al. Controlling wide-spectrum fluorescence on Au/ZnSe multi-heterojunction. Appl. Phys. A 124, 480 (2018). https://doi.org/10.1007/s00339-018-1888-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1888-7

Navigation