Skip to main content
Log in

Enhanced luminescence and photocurrent of organic microrod/ZnO nanoparticle hybrid system: Nanoscale optical and electrical characteristics

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

We studied the enhanced photoluminescence (PL) and photocurrent (PC) of 1,4-bis(3,5-bis(trifluoromethyl)styryl)-2,5-dibromobenzene (TSDB) microrods decorated with ZnO nanoparticles (NPs). Chemically synthesized crystalline ZnO NPs with an average size of 40 nm were functionalized with (3-aminopropyl)trimethoxysilane to result in the chemical bonding of the NPs onto the surface of the TSDB microrods. We observed a 2-fold PL enhancement in the ZnO/TSDB hybrid microrods compared with the PL of the pure TSDB microrods. In addition, PC measurement carried out on the TSDB and ZnO/TSDB hybrid microrods at two different excitation wavelengths of 355 nm and 405 nm showed the significant enhancement of the PC from the hybrid system, where the resonant excitation of the laser (355 nm) corresponding to the absorption of both ZnO and TSDB caused ∼3 times enhancement of the PC from the ZnO/TSDB hybrid microrods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. P. Dhakal, D. L. Duong, J. Lee, H. Nam, M. Kim, M. Kan, Y. H. Lee, and J. Kim, Nanoscale 6, 13028 (2014).

    Article  Google Scholar 

  2. K. P. Dhakal, H. Lee, J. Lee, S. H. Lee, J. Joo, and J. Kim, J. Mater. Chem. C 2, 1830 (2014).

    Article  Google Scholar 

  3. Q. Zhang, T. Atay, J. R. Tischler, M. S. Bradley, V. Bulovic, and A. V. Nurmikko, Nat. Nanotechnol. 2, 555 (2007).

    Article  Google Scholar 

  4. C.-Y. Moon, G. M. Dalpian, Y. Zhang, and S.-H. Wei, Chem. Mater. 18, 2805 (2006).

    Article  Google Scholar 

  5. F. Mammeri, E. L. Bourhis, L. Rozes, and C. Sanchez, J. Mater. Chem. 15, 3787 (2005).

    Article  Google Scholar 

  6. J. C. Tan and A. K. Cheetham, Chem. Soc. Rev. 40, 1059 (2011).

    Article  Google Scholar 

  7. J. Carrete, N. Mingo, G. Tian, H. Agren, A. Baev, and P. N. Prasad, J. Phys. Chem. C 116, 10881 (2012).

    Article  Google Scholar 

  8. W. Wang, S. Sun, S. Gu, H. Shen, Q. Zhang, J. Zhu, L. Wang, and W. Jiang, RSC Adv. 42, 26810 (2014).

    Article  Google Scholar 

  9. G. A. Prinz, Science 250, 1092 (1990).

    Article  Google Scholar 

  10. J. Yuan, Y. Xu, and A. H. E. Muller, Chem. Soc. Rev. 40, 640 (2011).

    Article  Google Scholar 

  11. H. Lee, J. H. Kim, K. P. Dhakal, J. W. Lee, J. S. Jung, J. Joo, and J. Kim, Appl. Phys. Lett. 101, 113103 (2012).

    Article  Google Scholar 

  12. K. P. Dhakal, H. Lee, J. W. Lee, J. Joo, M. Guthold, and J. Kim, J. Appl. Phys. 111, 123504 (2012).

    Article  Google Scholar 

  13. E. H. Cho, B.-G. Kim, S. Jun, J. Lee, D. H. Park, K.-S. Lee, J. Kim, J. Kim, and J. Joo, Adv. Funct. Mater. 24, 3684 (2014).

    Article  Google Scholar 

  14. S. G. Jo, D. H. Park, B.-G. Kim, S. Seo, S. J. Lee, J. Kim, J. Kim, and J. Joo, J. Mater. Chem. C 2, 6077 (2014).

    Article  Google Scholar 

  15. S. Chawla, M. Saroha, and R. K. Kotna, Electron. Mater. Lett. 10, 73, (2014).

    Article  Google Scholar 

  16. M.-T. Chen, M.-P. Lu, Y.-J. Wu, J. Song, C.-Y. Lee, M.-Y. Lu, Y.-C. Chang, L.-J. Chou, Z. L. Wang, and L.-J. Chen, Nano Lett. 10, 4387 (2010).

    Article  Google Scholar 

  17. M. Ahmadi, K. Mirabbaszadeh, S. Salari, and H. Fatehy, Electron. Mater. Lett. 10, 951 (2014).

    Article  Google Scholar 

  18. M.-J. Jin, J. Jo, G. P. Neupane, J. Kim, K.-S. An, and J.-W. Yoo, AIP Adv. 3, 102114 (2013).

    Article  Google Scholar 

  19. X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, and Z. L. Wang, Nano Lett. 6, 2768 (2006).

    Article  Google Scholar 

  20. S. N. Cha, J. E. Jang, Y. Choi, and G. A. J. Amaratunga, Appl. Phys. Lett. 89, 263102 (2006).

    Article  Google Scholar 

  21. N.-H. Cho, T.-C. Cheong, J. H. Min, J. H. Wu, S. J. Lee, D. Kim, J. S. Yang, S. Kim, Y. K. Kim, and S.-Y. Seong, Nat. Nanotechnol. 6, 675 (2011).

    Article  Google Scholar 

  22. H. Hong, J. Shi, Y. Yang, Y. Zhang, J. W. Engle, R. J. Nickles, X. Wang, and W. Cai, Nano Lett. 11, 3744 (2011).

    Article  Google Scholar 

  23. M. D. Hernandez-Alonso, F. Fresno, S. Suarez, and J. M. Coronado, Energy Environ. Sci. 2, 1231 (2009).

    Article  Google Scholar 

  24. O. Akhavan, ACS Nano 4, 4174 (2010).

    Article  Google Scholar 

  25. W. J. E. Beek, M. M. Wienk, and R. A. J. Janssen, J. Mater. Chem. 15, 2985 (2005).

    Article  Google Scholar 

  26. J. Liu, J. Wu, S. Shao, Y. Deng, B. Meng, Z. Xie, Y. Geng, L. Wang, and F. Zhang, ACS Appl. Mater. Interfaces 6, 8237 (2014).

    Article  Google Scholar 

  27. Q. Yang, Y. Liu, C. Pan, J. Chen, X. Wen, and Z. L. Wang, Nano Lett. 13, 607 (2013).

    Article  Google Scholar 

  28. X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, Nano Lett. 8, 1219 (2008).

    Article  Google Scholar 

  29. B. S. Gaylord, A. J. Heeger, and G. C. Bazan, Proc. Natl. Acad. Sci. 99, 10954 (2002).

    Article  Google Scholar 

  30. S. Wang and G. C. Bazan, Adv. Mater. 15, 1425 (2003).

    Article  Google Scholar 

  31. H. N. Kim, W. X. Ren, J. S. Kim, and J. Yoon, Chem. Soc. Rev. 41, 3210 (2012).

    Article  Google Scholar 

  32. K. P. Dhakal, H. Lee, and J. Kim, Synth. Met. 190, 44 (2014).

    Article  Google Scholar 

  33. S. T. Kochuveedu, T. Son, Y. Lee, M. Lee, D. Kim, and D. H. Kim, Sci Rep. 4, 4735 (2014).

    Article  Google Scholar 

  34. G. P. Neupane, K. P. Dhakal, M. S. Kim, H. Lee, M. Guthold, V. S. Joseph, J.-D. Hong, and J. Kim, J. Biomed. Opt. 19, 051210 (2014).

    Article  Google Scholar 

  35. A. Aboulaich, C.-M. Tilmaciu, C. Merlin, C. Mercier, H. Guilloteau, G. Medjahdi, and R. Schneider, Nanotechnology 23, 335101 (2012).

    Article  Google Scholar 

  36. G. Socrates, Second Edition, John Wiley and Sons Ltd., ISBN 0471942308 (1994).

  37. R. Lascola, R. Withnall, and L. Andrews, J. Phys. Chem. 92, 2145 (1988).

    Article  Google Scholar 

  38. G. Socrates, Infrared Characteristics Group Frequencies, John Wiley and Sons Ltd., New Jersey, USA (1994).

    Google Scholar 

  39. B. Arredondo, B. Romero, J. M. S. Pena, A. F.-Pacheco, E. Alonso, R. Vergaz, and C. de Dios, Sensors 13, 12266 (2013).

    Article  Google Scholar 

  40. S. Yoo, B. Domercq, and B. Kippelen, Appl. Phys. Lett. 85, 5427 (2004).

    Article  Google Scholar 

  41. Z. Caldıran, A. R. Deniz, S. Aydogan, A. Yesildag, and D. Ekinci, Superlattices Microstruct. 56, 45 (2013).

    Article  Google Scholar 

  42. G. A. H. Wetzelaer and P. W. M. Blom, Phys. Rev. B 89, 241201 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinsoo Joo or Jeongyong Kim.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neupane, G.P., Dhakal, K.P., Cho, E. et al. Enhanced luminescence and photocurrent of organic microrod/ZnO nanoparticle hybrid system: Nanoscale optical and electrical characteristics. Electron. Mater. Lett. 11, 741–748 (2015). https://doi.org/10.1007/s13391-015-4496-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-4496-0

Keywords

Navigation