Skip to main content
Log in

Structural characterization, electrical conductivity and open circuit voltage studies of the nanocrystalline La10Si6O27 electrolyte material for SOFCs

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanocrystalline La10Si6O27 apatite-type sample was synthesized by the co-precipitation method. Thermal behavior, phase, structure, morphology and elemental composition of La, O and Si of the synthesized La10Si6O27 sample were investigated through TG/DTA, XRD, FTIR, Raman spectroscopy and SEM-EDX measurements respectively. Formation of phase purity of the nanocrystalline La10Si6O27 sample was confirmed by analysing the measured X-ray powder diffraction (XRD) pattern using Rietveld refinement and the calculated average crystallite size of the La10Si6O27 sample was found to be 33 nm. The electrical conductivity of the sintered La10Si6O27 pellet was investigated as a function of temperature ranging from 200 to 800 °C under air and it was found to be 1.92 × 10−3 S cm−1 at 800 °C. The chemical stability of La10Si6O27 powder under oxidizing and reducing atmospheres was confirmed from the analysis of the measured XRD pattern and Raman spectral results. Open circuit potential of a button cell, made up of the La10Si6O27 sample, was tested up to 800 °C with both oxygen and hydrogen at opposite sides of the cell and was found to ~ 1 V. Hence, the results demonstrate that La10Si6O27 could be a promising solid electrolyte material for the solid oxide fuel cell (SOFC) applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. B. Rohland, J. Nitsch, H. Wendt, J. Power Sources 37, 271 (1992)

    ADS  Google Scholar 

  2. B. Johnston, M.C. Mayo, A. Khare, Technovation 25, 569 (2005)

    Google Scholar 

  3. N.Q. Minh, J. Am. Ceram. Soc. 76, 563 (1993)

    ADS  Google Scholar 

  4. S.C. Singhal, Solid State Ionics 135, 305 (2000)

    Google Scholar 

  5. M. Winter, R.J. Brodd, Chem. Rev 104, 4245 (2004)

    Google Scholar 

  6. E. Fabbri, L. Bi, D. Pergollesi, E. Traversa Adv. Mater 24, 195 (2012)

    Google Scholar 

  7. Q. Nguyen. Minh, Solid State Ionics 174, 271 (2004)

    Google Scholar 

  8. H. Yokokawa, N. Sakai, T. Horita, K. Yamaji, Fuel Cells 1 (2), (2001). p. 117

    Google Scholar 

  9. Brett D.J., Atkinson A., Brandon N.P., Skinner S.J. Chem. Soc. Rev 37, 1568 (2008)

    Google Scholar 

  10. J.P.P. Huijsmans, F.P.F. van Berkel, G.M. Christie, J. Power Sources 71, 107 (1998)

    ADS  Google Scholar 

  11. Boulch F., Djurado E. Solid State Ionics 157, 335 (2003)

    Google Scholar 

  12. Lee E, Prinz FB, Cai W Phy. Rev. B 83, 052301 (2011)

    ADS  Google Scholar 

  13. V.V. Kharton, F.M.B. Marques, A. Atkinson, Solid State Ionics 174, 135 (2004)

    Google Scholar 

  14. A. Gondolini, E. Mercadelli, A. Sanson, S. Albonetti, L. Doubova, S. Boldrini, Ceram. Int 37(4), 1423 (2011)

    Google Scholar 

  15. T. Ligong Cong, Y. He, P. Ji, Y. Guan, W. Huang, Su, J. Alloys Compounds 348, 325 (2003)

    Google Scholar 

  16. T. Norby, J. Mater. Chem 11, 11 (2001)

    Google Scholar 

  17. Nakayama S, Aono H, Sadaoka Y, Chem. Lett 24, 431 (1995)

    Google Scholar 

  18. Nakayama S, Kageyama T, Aono H, Sadaoka Y, J. Mater.Chem 5(11), 1801 (1995)

    Google Scholar 

  19. S. Nakayama, M. Sakamoto, J. Eu. Cera. Soc 18, 1413 (1998)

    Google Scholar 

  20. A. Orera, E. Kendrick, D.C. Apperley, V.M. Orera, P.R. Slater, Dalt. Trans 39, 5296 (2008)

    Google Scholar 

  21. G. Ou, X. Ren, L. Yao, H. Nishijima, W. Pan, J. Mater. Chem. A 2, 13817 (2014)

    Google Scholar 

  22. E. Bechade, O. Masson, T. Iwata, I. Julien, K. Fukuda, P. Tomas, E. Champion. Chem. Mater 21, 2508 (2009)

    Google Scholar 

  23. A. Jones, R. Peter, M. Slater, S. Islam, Chem. Mater 20, 5055 (2008)

    Google Scholar 

  24. K. Fukuda, T. Asaka, M. Oyabu, D. Urushihara, A. Berghout, E. Bechade, O. Masson, I. Julien, P. Thomas. Chem. Mater 24, 4623 (2012)

    Google Scholar 

  25. T. An, T. Baikie, A. Orera, R. O. Piltz, M. Meven, P. R. Slater, J. Wei, M. L. Sanjuan, T.J. White, J. Am. Chem. Soc. 138, 4468 (2016)

    Google Scholar 

  26. G.M. Bellino, D.G. Lamas, N.E. Walsoe de Reca, Adv. Funt. Mater 16, 107 (2006)

    Google Scholar 

  27. U. Brassmann, G. Knoner, H.E. Schaefer, R. Wurschum, Rev. Adv. Mat. Sci 6, 7 (2004)

    Google Scholar 

  28. S. Tao, T.S. John, Irvine, Mater. Res. Bull 36, 1245 (2001)

    Google Scholar 

  29. S. H. Jo, P. Muralidharan, D. K. Kim, J. Mater. Res. 24, 1 (2009)

    Google Scholar 

  30. S. George, “Infra red and Raman characteristics group frequencies Tables and Charts”., 3rd edn., Wiley, New Jersey (2001)

    Google Scholar 

  31. G. Lucazeau, N. Sergent, T. Pagnier, A. Shaula, V. Kharton, F.M.B. Marques, J. Raman Spec 38, 21 (2007)

    ADS  Google Scholar 

  32. J.E.H. Sansom, E. Kendrick, J.R. Tolchard, M.S. Islam, P.R. Slater, J. Solid State Electrochem 10, 562 (2006)

    Google Scholar 

  33. J. Xiang, Z.G. Liu, J.H. Ouyang, F.Y. Yan, J. Power Sources 251, 305 (2014)

    ADS  Google Scholar 

  34. S.P. Jiang, L. Zhang, H.Q. He, R. K. Yap, Y. Xiang, J Power Sources 189, 972 (2009)

    Google Scholar 

  35. X. Ding, G. Hua, D. Ding, W. Zhu, H. Wang, J. Power Sources 306, 630 (2016)

    ADS  Google Scholar 

  36. M. Sakao, T. Ishihara, H. Yoshioka, Solid State Ionics 293, 51 (2016)

    Google Scholar 

  37. A. Mineshige, T. Nakao, M. Kobune, T. Yazawa, H. Yoshioka, Solid State Ionics 179, 1009 (2008)

    Google Scholar 

  38. H. Yoshioka, S. Tanase, Solid State Ionics 176, (31–34) 2395 (2005).

    Google Scholar 

  39. T. Yang, H. Zhao, J. Han, N. Xu, Y. Shen, Z. Du, J.Wang, J. Eu. Cer. Soc 34, 1563 (2014)

    Google Scholar 

  40. H. Yoshioka, J. Alloys Compd. 408(412), 649 (2006)

    Google Scholar 

  41. A.R. West, D.C. Sinclair, N. Hirose, J. Electroceramics 1, 65 (1997)

    Google Scholar 

  42. C. Tian, S.-W. Chan, Solid State Ionics 134, 89 (2000)

    Google Scholar 

  43. X. Guo, W. Single, J. Maier, J. Am. Ceram. Soc. 86, 77 (2003)

    Google Scholar 

  44. G. Chiodelli, L. Malavasi, Ionics 19, 1135 (2013)

    Google Scholar 

  45. O.A. Marina, C. Bagger, S. Primdahl, M. Mogensen, Solid State Ionics 123, 199 (1999)

    Google Scholar 

  46. J. Li, R. Guo, H. Jiang, Bull. Mater. Sci 35, 957 (2012)

    Google Scholar 

Download references

Acknowledgements

Dr. NS and Dr. PM gratefully acknowledge BRNS sanction no. 2012/34/73/BRNS/2967, Government of India, for providing financial support in the form of major research projects and also PFRC, DST, UGC, AICTE, CSIR and DRDO for allowing the use of instruments. The authors also thank the Central Instrumentation Facility (CIF), Pondicherry University, for allowing the use of Raman Spectroscopy and SEM–EDX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Satyanarayana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jena, P., Jayasubramaniyan, S., Patro, P.K. et al. Structural characterization, electrical conductivity and open circuit voltage studies of the nanocrystalline La10Si6O27 electrolyte material for SOFCs. Appl. Phys. A 124, 125 (2018). https://doi.org/10.1007/s00339-017-1520-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1520-2

Navigation