Skip to main content
Log in

Fabrication of three-dimensional microstructures in positive photoresist through two-photon direct laser writing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) microstructures with micron scale are fabricated in photoresist using two-photon direct laser writing with an infrared femtosecond laser at 800 nm. The positive photoresist of Novolak/diazonaphthoquinone (DNQ) is used for the fabrication of line structures and 3D microstructures. Linewidths of line structures are fabricated with laser power ranging from 1 to 15 mW and scanning speeds ranging from 5 to 50 μm s−1. The obtained linewidth is analyzed using an exposure kinetics model of DNQ for two-photon absorption. Both 3D inversed woodpile structures and helical structures are fabricated.

Graphical abstract

Two-photon direct laser writing is used to fabricate microstructures in positive photoresist. Microstructures with helical and inversed woodpile shapes were fabricated with positive photoresist Novolak/DNQ using two-photon direct laser writing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Maruo, O. Nakamura, S. Kawata, Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22, 132–134 (1997)

    Article  ADS  Google Scholar 

  2. M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, S. Juodkazis, Ultrafast laser processing of materials: from science to industry. Light Sci. Appl. 5, e16133 (2016)

    Article  Google Scholar 

  3. T. Bückmann, M. Thiel, M. Kadic, R. Schittny, M. Wegener, An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nat. Commun. 5, 4130 (2014)

    Article  Google Scholar 

  4. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  ADS  Google Scholar 

  5. E. Yablonovitch, K.M. Leung, Hope for photonic bandgap. Nature 351, 278 (1991)

    Article  ADS  Google Scholar 

  6. H.-B. Sun, S. Matsuo, H. Misawa, Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin. Appl. Phys. Lett. 74, 786–788 (1999)

    Article  ADS  Google Scholar 

  7. K. Kaneko, H.B. Sun, X.M. Duan, S. Kawata, Submicron diamond-lattice photonic crystals produced by two-photon laser nanofabrication. Appl. Phys. Lett. 83, 2091–2093 (2003)

    Article  ADS  Google Scholar 

  8. K.K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, H. Misawa, Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing. Adv. Mater. 17, 541–545 (2005)

    Article  Google Scholar 

  9. M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, G. von Freymann, Polarization stop bands in chiral polymeric three-dimensional photonic crystals. Adv. Mater. 19, 207–210 (2007)

    Article  Google Scholar 

  10. M. Thiel, M.S. Rill, G. von Freymann, M. Wegener, Three-dimensional bi-chiral photonic crystals. Adv. Mater. 21, 4680–4682 (2009)

    Article  Google Scholar 

  11. M.S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, M. Wegener, Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nat. Mater. 7, 543–546 (2008)

    Article  ADS  Google Scholar 

  12. J.K. Gansel, M. Thiel, M.S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009)

    Article  ADS  Google Scholar 

  13. Y. Yan, M.I. Rashad, E.J. Teo, H. Tanoto, J. Teng, A.A. Bettiol, Selective electroless silver plating of three dimensional SU-8 microstructures on silicon for metamaterials applications. Opt. Mater. Express 1, 1548–1554 (2011)

    Article  Google Scholar 

  14. J. Moughames, S. Jradi, T.M. Chan, S. Akil, Y. Battie, A.E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, A. Bruyant, Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials. Sci. Rep. 6, 33627 (2016)

    Article  ADS  Google Scholar 

  15. G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C.M. Soukoulis, E.N. Economou, Three-dimensional infrared metamaterial with asymmetric transmission. ACS Photonics 2, 287–294 (2015)

    Article  Google Scholar 

  16. S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, H. Giessen, Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on SEIRA enhancement. ACS Photonics 2, 779–786 (2015)

    Article  Google Scholar 

  17. J. Kaschke, M. Wegener, Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography. Opt. Lett. 40(17), 3986–3989 (2015)

    Article  ADS  Google Scholar 

  18. J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, M. Wegener, A helical metamaterial for broadband circular polarization conversion. Adv. Opt. Mater. 3(10), 1411–1417 (2015)

    Article  Google Scholar 

  19. P. Tayalia, C.R. Mendonca, T. Baldacchini, D.J. Mooney, E. Mazur, 3D cell-migration studies using two-photon engineered polymer scaffolds. Adv. Mater. 20, 4494–4498 (2008)

    Article  Google Scholar 

  20. M. Röhrig, M. Thiel, M. Worgull, H. Hölscher, 3D direct laser writing of nano- and microstructured hierarchical gecko-mimicking surfaces. Small 8, 3009–3015 (2012)

    Article  Google Scholar 

  21. J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography. Biofabrication 7, 015015 (2015)

    Article  ADS  Google Scholar 

  22. A.M. Greiner, B. Richter, M. Bastmeyer, Micro-engineered 3D scaffolds for cell culture studies. Macromol. Biosci. 12, 1301–1314 (2012)

    Article  Google Scholar 

  23. K.C. Hribar, K. Meggs, J. Liu, W. Zhu, X. Qu, S. Chen, Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser. Sci. Rep. 5, 17203 (2015)

    Article  ADS  Google Scholar 

  24. M. Mihailescu, I.A. Paun, M. Zamfirescu, C.R. Luculescu, A.M. Acasandrei, M. Dinescu, Laser-assisted fabrication and non-invasive imaging of 3D cell-seeding constructs for bone tissue engineering. J. Mater. Sci. 51, 4262–4273 (2016)

    Article  ADS  Google Scholar 

  25. A. Marino, J. Barsotti, G. de Vito, C. Filippeschi, B. Mazzolai, V. Piazza, M. Labardi, V. Mattoli, G. Ciofani, Two-photon lithography of 3D nanocomposite piezoelectric scaffolds for cell stimulation. ACS Appl. Mater. Interfaces. 7(46), 25574–25579 (2015)

    Article  Google Scholar 

  26. I.A. Paun, M. Zamfirescu, C.R. Luculescu, A.M. Acasandrei, C.C. Mustaciosu, M. Mihailescu, M. Dinescu, Electrically responsive microreservoires for controllable delivery of dexamethasone in bone tissue engineering. Appl. Surf. Sci. 392, 321–331 (2017)

    Article  ADS  Google Scholar 

  27. S. Tottori, L. Zhang, F. Qiu, K.K. Krzysztof, A. Franco-Obregón, B.J. Nelson, Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv. Mater. 24, 811–816 (2012)

    Article  Google Scholar 

  28. S. Kim, F. Qiu, S. Kim, A. Ghanbari, C. Moon, L. Zhang, B.J. Nelson, H. Choi, Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv. Mater. 25, 5863–5868 (2013)

    Article  Google Scholar 

  29. R. Nakamura, K. Kinashi, W. Sakai, N. Tsutsumi, Fabrication of gold microstructures using negative photoresists doped with gold ions through two-photon excitation. Phys. Chem. Chem. Phys. 18, 17024–17028 (2016)

    Article  Google Scholar 

  30. S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E.G. Gamaly, S. Juodkazis, Nanoscale precision of 3D polymerization via polarization control. Adv. Opt. Mater. 4(8), 1209–1214 (2016)

    Article  Google Scholar 

  31. H.-Z. Cao, M.-L. Zheng, X.-Z. Dong, F. Jin, Z.-S. Zhao, X.-M. Duan, Two-photon nanolithography of positive photoresist thin film with ultrafast laser direct writing. Appl. Phys. Lett. 102, 201108 (2013)

    Article  ADS  Google Scholar 

  32. N.K. Urdabayev, V.V. Popik, Wolff rearrangement of 2-diazo-1(2H)-naphthalenone induced by nonresonant two-photon absorption of NIR radiation. J. Am. Chem. Soc. 126, 4058–4059 (2004)

    Article  Google Scholar 

  33. A. Žukauskas, M. Malinauskas, G. Seniutinas, S. Juodkazis, Rapid laser optical printing in 3D at a nanoscale, in Multiphoton lithography: Techniques, Materials and Applications, ed. by J. Stampfl, R. Liska, A. Ovsianikov eds, (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2016), Chap. 1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto Tsutsumi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsutsumi, N., Fukuda, A., Nakamura, R. et al. Fabrication of three-dimensional microstructures in positive photoresist through two-photon direct laser writing. Appl. Phys. A 123, 553 (2017). https://doi.org/10.1007/s00339-017-1170-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1170-4

Navigation