Skip to main content

3-D Nanostructure Fabrication by Focused-Ion Beam, Electron- and Laser Beam

  • Chapter
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

  • 10k Accesses

Abstract

In this chapter, we describe three-dimensional (GlossaryTerm

3-D

) nanostructure fabrication techniques using focused-ion-beam (GlossaryTerm

FIB

)-induced chemical vapor deposition (GlossaryTerm

CVD

), electron-beam (GlossaryTerm

EB

)-induced CVD, and femtosecond laser (GlossaryTerm

fs-laser

) techniques. We first describe 30 keV Ga+ FIB-induced CVD using a phenanthrene (C14H10) source gas as the precursor. A diamond-like amorphous carbon film is deposited during this process; it has a Young's modulus exceeding 600 GPa, making it potentially highly desirable for various applications. A three-dimensional pattern generator system has been developed to make arbitrary three-dimensional nanostructures. We also discuss microstructure plastic art, which is a new field that has been made possible by microbeam technology, and we present examples of such art, including a micro wine glass with an external diameter of 2.75 μm and a height of 12 μm. We then discuss free-space nanowiring and show by using a mixture of C14H10 and W ( CO)6 that the electrical properties indicate an increase in metal content results in a lower resistivity. We also demonstrate that a Morpho butterfly scale quasistructure fabricated by FIB-induced CVD has almost the same optical characteristics as a real Morpho butterfly scale. We then discuss three-dimensional nanostructure fabrication using EB-induced CVD. Because of the nanometer resolution, EB-induced CVD is now indispensable for mask repair techniques for the 193 nm node. According to real-time observations by transmission electron microscopy, the W clusters, as the initial growth stage, are formed first followed by the W layer which forms as W clusters coalesce due to EB irradiation. We go on to discuss photonic crystals and Smith–Purcell electron optics as examples of three-dimensional nanostructure applications using EB-induced CVD. Finally, we describe femtosecond-laser-assisted micro/nano fabrication which has been recognized as a promising technique to fabricate three-dimensional structures inside transparent materials. The spatial resolution can reach submicrometer levels and even tens of nanometers owing to suppression of the involved heat diffusion and nonlinear adsorption. We discuss three-dimensional femtosecond laser nanofabrication using the direct laser writing technique and multiple beam interference lithography and describe the fabrication of photonic crystals in a photoresist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Matsui: Nanostructure fabrication using electron beam and its application to nanometer devices, Proc. IEEE 85, 629–642 (1997)

    Article  Google Scholar 

  2. A. Wargner, J.P. Levin, J.L. Mauer, P.G. Blauner, S.J. Kirch, P. Long: X-ray mask repair with focused ion beams, J. Vac. Sci. Technol. B 8, 1557–1564 (1990)

    Article  Google Scholar 

  3. O. Lehmann, M. Stuke: Generation of three-dimensional free-standing metal micro-objects by laser chemical processing, Appl. Phys. A 53, 343–345 (1991)

    Article  Google Scholar 

  4. H.W.P. Koops, J. Kretz, M. Rudolph, M. Weber, G. Dahm, K.L. Lee: Characterization and application of materials grown by electron-beam-induced deposition, Jpn. J. Appl. Phys. 33, 7099–7107 (1994)

    Article  Google Scholar 

  5. S. Matsui, T. Kaito, J. Fujita, M. Komuro, K. Kanda, Y. Haruyama: Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 18, 3181–3184 (2000)

    Article  Google Scholar 

  6. H.B. Sun, S. Matsuo, H. Misawa: Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin, Appl. Phys. Lett. 74, 786–788 (1999)

    Article  Google Scholar 

  7. K. Kand, J. Igaki, Y. Kato, R. Kometani, A. Saikubo, S. Matsui: NEXAFA study on carbon-based material formed by focused-ion-beam chemical-vapor-deposition, Radiat. Phys. Chem. 75, 1850–1854 (2006)

    Article  Google Scholar 

  8. J. Igaki, A. Saikubo, R. Kometani, K. Kanda, T. Suzuki, K. Niihara, S. Matsui: Elementary analysis of diamond-like carbon film formed by focused-ion-beam chemical vapor deposition, Jpn. J. Appl. Phys. 46, 8003–8004 (2007)

    Article  Google Scholar 

  9. T. Hoshino, K. Watanabe, R. Kometani, T. Morita, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Development of three-dimensional pattern-generating system for focused-ion-beam chemical-vapor-deposition, J. Vac. Sci. Technol. B 21, 2732–2736 (2003)

    Article  Google Scholar 

  10. R. Kometani, S. Ishihara, T. Kaito, S. Matsui: In situ observation of the three-dimensional nano-structure growth on focused-ion-beam chemical vapor deposition by scanning electron microscope, Appl. Phys. Express 1, 055001 (2008)

    Article  Google Scholar 

  11. E. Buks, M.L. Roukes: Stiction, adhesion energy and the Casimir effect in micromechanical systems, Phys. Rev. B 63, 033402 (2001)

    Article  Google Scholar 

  12. J. Fujita, M. Ishida, T. Sakamoto, Y. Ochiai, T. Kaito, S. Matsui: Observation and characteristics of mechanical vibration in three-dimensional nanostructures and pillars grown by focused ion beam chemical vapor deposition, J. Vac. Sci. Technol. B 19, 2834–2837 (2001)

    Article  Google Scholar 

  13. M. Ishida, J. Fujita, Y. Ochiai: Density estimation for amorphous carbon nanopillars grown by focused ion beam assisted chemical vapor deposition, J. Vac. Sci. Technol. B 20, 2784–2787 (2002)

    Article  Google Scholar 

  14. T. Morita, K. Nakamatsu, K. Kanda, Y. Haruyama, K. Kondo, T. Hoshino, T. Kaito, J. Fujita, T. Ichihashi, M. Ishida, Y. Ochiai, T. Tajima, S. Matsui: Nanomechanical switch fabrication by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 22, 3137–3142 (2004)

    Article  Google Scholar 

  15. R. Kometani, T. Hoshino, K. Kondo, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Characteristic of nano-electrostatic actuator fabricated by focused ion beam chemical vapor deposition, Jpn. J. Appl. Phys. 43, 7187–7191 (2004)

    Article  Google Scholar 

  16. R. Kometani, T. Morita, K. Watanabe, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Nozzle-nanostructure fabrication on glass capillary by focused-ion-beam chemical vapor deposition and etching, Jpn. J. Appl. Phys. 42, 4107–4110 (2003)

    Article  Google Scholar 

  17. R. Kometani, T. Hoshino, K. Kondo, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Performance of nanomanipulator fabricated on glass capillary by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 23, 298–301 (2005)

    Article  Google Scholar 

  18. R. Kometani, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Three-dimensional high-performance nano-tools fabricated using focused-ion-beam chemical vapor deposition, Nucl. Instrum. Methods. Phys. Res. B 232, 362–366 (2005)

    Article  Google Scholar 

  19. K. Nakamatsu, M. Nagase, H. Namatsu, S. Matsui: Mechanical characteristics of diamond-like-carbon nanosprings fabricated by focused-ion-beam chemical vapor deposition, Jpn. J. Appl. Phys. 44, L1228–L1230 (2005)

    Article  Google Scholar 

  20. T. Morita, R. Kometani, K. Watanabe, K. Kanda, Y. Haruyama, T. Hoshino, K. Kondo, T. Kaito, T. Ichihashi, J. Fujita, M. Ishida, Y. Ochiai, T. Tajima, S. Matsui: Free-space-wiring fabrication in nano-space by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 21, 2737–2741 (2003)

    Article  Google Scholar 

  21. J. Fujita, M. Ishida, T. Ichihashi, Y. Ochiai, T. Kaito, S. Matsui: Graphitization of Fe-doped amorphous carbon pillars grown by focused ion-beam-induced chemical-vapor deposition, J. Vac. Sci. Technol. B 20, 2686–2689 (2002)

    Article  Google Scholar 

  22. D. Guo, R. Kometani, S. Warisawa, S. Ishihara: Growth of ultra-long free-space-nanowire by the real-time feedback control of the scanning speed on focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 31, 061601 (2013)

    Article  Google Scholar 

  23. R. Kometani, S. Warisawa, S. Ishihara: The 3-D nanostructure growth evaluations by the real-time current monitoring on focused-ion-beam chemical vapor deposition, Microelectron. Eng. 87, 1044–1048 (2010)

    Article  Google Scholar 

  24. K. Nakamatsu, K. Yamamoto, T. Hirayama, S. Matsui: Fabrication of fine electron biprism filament by free-space-nanowiring technique of focused-ion-beam + chemical vapor deposition for accurate off-axis electron holography, Appl. Phys. Express 1, 117004 (2008)

    Article  Google Scholar 

  25. R. Kometani, K. Yusa, S. Warisawa, S. Ishihara: Piezoresistive effect in the three-dimensional diamondlike carbon nanostructure fabricated by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 28, C6F38–41 (2010)

    Article  Google Scholar 

  26. J. Dai, K. Onomitsu, R. Kometani, Y. Krockenberger, H. Yamaguchi, S. Ishihara, S. Warisawa: Superconductivity in tungsten-carbide nanowires deposited from the mixtures of W(CO)6and C14H10, Jpn. J. Appl. Phys. 52, 075001 (2013)

    Article  Google Scholar 

  27. J. Dai, R. Kometani, K. Onomitsu, Y. Krockenberger, H. Yamaguchi, S. Ishihara, S. Warisawa: Direct fabrication of a W-C SNS Josephson junction using focused-ion-beam chemical vapor deposition, J. Micromech. Microeng. 24, 055015 (2014)

    Article  Google Scholar 

  28. P. Vukusic, J.R. Sambles: Photonic structures in biology, Nature 424, 852–855 (2003)

    Article  Google Scholar 

  29. K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, S. Matsui: Brilliant blue observation from a morpho-butterfly-scale quasi-structure, Jpn. J. Appl. Phys. 44, L48–L50 (2005)

    Article  Google Scholar 

  30. A.N. Broers, W.W. Molzen, J.J. Cuomo, N.D. Wittels: Electron-beam fabrication of 80-Å metal structures, Appl. Phys. Lett. 29, 596–597 (1976)

    Article  Google Scholar 

  31. S. Matsui, K. Mori: New selective deposition technology by electron beam induced surface reaction, Jpn. J. Appl. Phys. 23, L706–L708 (1984)

    Article  Google Scholar 

  32. S. Matsui, K. Mori: New selective deposition technology by electron beam induced surface reaction, J. Vac. Sci. Technol. B 4, 299–304 (1986)

    Article  Google Scholar 

  33. H.W.P. Koops, R. Weiel, D.P. Kern, T.H. Baum: High-resolution electron-beam induced deposition, J. Vac. Sci. Technol. B 6, 477–481 (1988)

    Article  Google Scholar 

  34. S. Matsui, T. Ichihashi, M. Mito: Electron beam induced selective etching and deposition technology, J. Vac. Sci. Technol. B 7, 1182–1190 (1989)

    Article  Google Scholar 

  35. Y. Ochiai, J. Fujita, S. Matsui: Electron-beam-induced deposition of copper compound with low resistivity, J. Vac. Sci. Technol. B 14, 3887–3891 (1996)

    Article  Google Scholar 

  36. I. Utke, P. Hoffmann, B. Dwir, K. Leifer, E. Kapon, P. Doppelt: Focused electron beam induced deposition of gold, J. Vac. Sci. Technol. B 18, 3168–3171 (2000)

    Article  Google Scholar 

  37. H.W.P. Koops, A. Reinhardt, F. Klabunde, A. Kaya, R. Plontke: Vapor supply manifold for additive nanolithography with electron beam induced deposition, Microcircuit Eng. 57/58, 909–913 (2001)

    Article  Google Scholar 

  38. U. Hübner, R. Plontke, M. Blume, A. Reinhardt, H.W.P. Koops: On-line nanolithography using electron beam-induced deposition technique, Microelectron. Eng. 57/58, 953–958 (2001)

    Article  Google Scholar 

  39. H.W.P. Koops, O.E. Hoinkis, M.E.W. Honsberg, R. Schmidt, R. Blum, G. Böttger, A. Kuligk, C. Liguda, M. Eich: Two-dimensional photonic crystals produced by additive nanolithography with electron beam-induced deposition act as filters in the infrared, Microelectron. Eng. 57/58, 995–1001 (2001)

    Article  Google Scholar 

  40. F. Floreani, H.W.P. Koops, W. Elsäßer: Operation of high power field emitter fabricated with electron beam deposition and concept of a miniaturized free electron laser, Microelectron. Eng. 57/58, 1009–1016 (2001)

    Article  Google Scholar 

  41. K. Mitsuishi, M. Shimojo, M. Han, K. Furuya: Electron-beam-induced deposition using a subnanometer-sized probe of high-energy electrons, Appl. Phys. Lett. 83, 2064–2066 (2003)

    Article  Google Scholar 

  42. M. Shimojo, M. Takeguchi, M. Tanaka, K. Mitsuishi, K. Furuya: Electron beam-induced deposition using iron carbonyl and the effects of heat treatment on nanostructure, Appl. Phys. A 79, 1869–1872 (2004)

    Article  Google Scholar 

  43. M. Tanaka, M. Shimojo, M. Han, K. Mitsuishi, K. Furuya: Ultimate sized nano-dots formed by electron beam-induced deposition using an ultrahigh vacuum transmission electron microscope, Surf. Interface Anal. 37, 261–264 (2005)

    Article  Google Scholar 

  44. I. Utke, V. Friedli, M. Purrucker, J. Michler: Resolution in focused electron- and ion-beam induced processing, J. Vac. Sci. Technol. B 25, 2219–2223 (2007)

    Article  Google Scholar 

  45. J.D. Barry, M. Ervin, J. Molstad, A. Wickenden, T. Brintlinger, P. Hoffman, J. Melngailis: Electron beam induced deposition of low resistivity platinum from Pt(PF3)4, J. Vac. Sci. Technol. B 24, 3165–3168 (2006)

    Article  Google Scholar 

  46. A. Perentes, G. Sinicco, G. Boero, B. Dwir, P. Hoffmann: Focused electron beam induced deposition of nickel, J. Vac. Sci. Technol. B 25, 2228–2232 (2007)

    Article  Google Scholar 

  47. A. Botman, D.A.M. de Winter, J.J.L. Muders: Electron-beam-induced deposition of platinum at low landing energies, J. Vac. Sci. Technol. B 26, 2460–2463 (2008)

    Article  Google Scholar 

  48. A. Botman, M. Hesselberth, J.J.L. Mulders: Investigation of morphological changes in platinum-containing nanostructures created by electron-beam-induced deposition, J. Vac. Sci. Technol. B 26, 2464–2467 (2008)

    Article  Google Scholar 

  49. S.J. Randolph, J.D. Fowlkes, P.D. Rack: Focused, nanoscale electron-beam-induced deposition and etching, Crit. Rev. Solid State Mater. Sci. 31, 55–89 (2006)

    Article  Google Scholar 

  50. W.F. von Dorp, C.W. Hagen: A critical literature review of focused electron beam induced deposition, J. Appl. Phys. 104, 081301 (2008)

    Article  Google Scholar 

  51. I. Utke, P. Hoffmann, J. Melngailis: Gas-assisted focused electron beam and ion beam processing and fabrication, J. Vac. Sci. Technol. B 26, 1197–1276 (2008)

    Article  Google Scholar 

  52. J. Bishop, C.J. Lobo, A. Martin, M. Ford, M. Phillips, M. Toth: Role of activated chemisorption in gas-mediated electron beam induced deposition, Phys. Rev. Lett. 109, 146103 (2012)

    Article  Google Scholar 

  53. N. Silvis-Cividjian, C.W. Hagen, L.H.A. Leunissen, P. Kruit: The role of secondary electrons in electron-beam-induced deposition spacial resolution, Microelectron. Eng. 61/62, 693–699 (2002)

    Article  Google Scholar 

  54. V. Friedli, I. Utke, K. Mølhave, J. Michler: Dose and energy dependence of mechanical properties of focused electron-beam induced pillar deposits from Cu(C5HF6O2)2, Nanotechnology 20, 385304 (2009)

    Article  Google Scholar 

  55. R. Lavrijsen, R. Córdoba, F.J. Schoenaker, T.H. Ellis, B. Barcones, J.T. Kohlhepp, H.J.M. Swagten, B. Koopmans, J.M. De Teresa, C. Magen, M.R. Ibarra, P. Trompenaars, J.J.L. Mulders: Fe:O:C grown by focused-electron-beam-induced deposition: Magnetic and electric properties, Nanotechnology 22, 025302 (2011)

    Article  Google Scholar 

  56. T. Brintlinger, M.S. Fuhrer, J. Melngailis, I. Utke, T. Bret, A. Perentes, P. Hoffmann, M. Abourida, P. Doppelt: Electrodes for carbon nanotube devices by focused electron beam induced deposition of gold, J. Vac. Sci. Technol. B 23, 3174–3177 (2005)

    Article  Google Scholar 

  57. S. Graells, R. Alcubilla, G. Badenes, R. Quidant: Growth of plasmonic gold nanostructures by electron beam induced deposition, Appl. Phys. Lett. 91, 121112 (2007)

    Article  Google Scholar 

  58. A. Fernández-Pacheco, J.M. de Teresa, R. Cordoba, M.R. Ibarra, D. Petit, D.E. Read, L. O’Brien, E.R. Lewis, H.T. Zeng, R.P. Cowburn: Domain wall conduit behavior in cobalt nanowires grown by focused electron beam induced deposition, Appl. Phys. Lett. 94, 192509 (2009)

    Article  Google Scholar 

  59. J. Pablo-Navarro, C. Magén, J.M. de Teresa: Three-dimensional core-shell ferromagnetic nanowires grown by focused electron beam induced deposition, Nanotechnology 27, 285302 (2016)

    Article  Google Scholar 

  60. H. Acar, T. Coenen, A. Polman, L.K. Kuipers: Dispersive ground plane core-shell type optical monopole antennas fabricated with electron beam induced deposition, ACS Nano 6, 8226–8232 (2012)

    Article  Google Scholar 

  61. P. Woźniak, K. Höflich, G. Brönstrup, P. Banzer, S. Christiansen, G. Leuchs: Unveiling the optical properties of a metamaterial synthesized by electron-beam-induced deposition, Nanotechnology 27, 025705 (2016)

    Article  Google Scholar 

  62. I. Utke, S. Moshkalev, P. Russel (Eds.): Nanofabrication Using Focused Ion and Electron-Beams (Oxford Univ. Press, Oxford 2012)

    Google Scholar 

  63. S. Matsui, K. Mori: In situ observation on electron beam induced chemical vapor deposition by Auger electron spectroscopy, Appl. Phys. Lett. 51, 646–648 (1987)

    Article  Google Scholar 

  64. S. Matsui, T. Ichihashi: In situ observation on electron-beam-induced chemical vapor deposition by transmission electron microscopy, Appl. Phys. Lett. 53, 842–844 (1988)

    Article  Google Scholar 

  65. V. Tasco, M. Esposito, F. Todisco, A. Benedetti, M. Cuscunà, D. Sanvitto, A. Passaseo: Three-dimensional nanohelices for chiral photonics, Appl. Phys. A 122, 280 (2016)

    Article  Google Scholar 

  66. S. Juodkazis, V. Mizeikis, H. Misawa: Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications, J Appl. Phys. 106, 051101 (2009)

    Article  Google Scholar 

  67. K. Sugioka, Y. Cheng: Ultrafast lasers-reliable tools for advanced materials processing, Light Sci. Appl. 3, e149 (2014)

    Article  Google Scholar 

  68. J.F. Herbstman, A.J. Hunt: High-aspect ratio nanochannel formation by single femtosecond laser pulses, Opt. Express 18, 16840–16848 (2010)

    Article  Google Scholar 

  69. E. Brasselet, M. Malinauskas, A. Zukauskas, S. Juodkazis: Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum, Appl. Phys. Lett. 97, 211108 (2010)

    Article  Google Scholar 

  70. S. Maruo, K. Ikuta, H. Korogi: Submicron manipulation tools driven by light in a liquid, Appl. Phys. Lett. 82, 133 (2003)

    Article  Google Scholar 

  71. Y.Y. Cao, N. Takeyasu, T. Tanaka, X.M. Duan, S. Kawata: 3-D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction, Small 5, 1144–1148 (2009)

    Google Scholar 

  72. Y.J. Yan, M.I. Rashad, E.J. Teo, H. Tanoto, J.H. Teng, A.A. Bettiol: Selective electroless silver plating of three dimensional SU-8 microstructures on silicon for metamaterials applications, Opt. Mater. Express 1, 1548–1554 (2011)

    Article  Google Scholar 

  73. D.X. Liu, Y.L. Sun, W.F. Dong, R.Z. Yang, Q.D. Chen, H.B. Sun: Dynamic laser prototyping for biomimetic nanofabrication, Laser Photonics Rev. 8, 882–888 (2014)

    Article  Google Scholar 

  74. T. Ergin, N. Stenger, P. Brenner, J.B. Pendry, M. Wegener: Three-dimensional invisibility cloak at optical wavelengths, Science 328, 337–339 (2010)

    Article  Google Scholar 

  75. H.B. Sun, S. Matsuo, H. Misawa: Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin, Appl. Phys. Lett. 74, 786–788 (1999)

    Article  Google Scholar 

  76. B.H. Cumpston, S.P. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine, A.A. Heikal, S.M. Kuebler, I.Y.S. Lee, D. McCord-Maughon, J.Q. Qin, H. Rockel, M. Rumi, X.L. Wu, S.R. Marder, J.W. Perry: Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication, Nature 398, 51–54 (1999)

    Article  Google Scholar 

  77. K.K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, H. Misawa: Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing, Adv. Mater. 17, 541–545 (2005)

    Article  Google Scholar 

  78. K.K. Seet, V. Mizeikis, S. Juodkazis, H. Misawa: Spiral three-dimensional photonic crystals for telecommunications spectral range, Appl. Phys. A 82, 683–688 (2006)

    Article  Google Scholar 

  79. A. Ovsianikov, S.Z. Xiao, M. Farsari, M. Vamvakaki, C. Fotakis, B.N. Chichkov: Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials, Opt. Express 17, 2143–2148 (2009)

    Article  Google Scholar 

  80. S.R. Kennedy, M.J. Brett, O. Toader, S. John: Fabrication of tetragonal square spiral photonic crystals, Nano Lett. 2, 59–62 (2002)

    Article  Google Scholar 

  81. Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, H. Misawa: Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses, J. Micromech. Microeng. 20, 035004 (2010)

    Article  Google Scholar 

  82. K.K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H. Misawa, N. Tetreault, S. John: Templating and replication of spiral photonic crystals for silicon photonics, IEEE J. Sel. Top. Quant. 14, 1064–1073 (2008)

    Article  Google Scholar 

  83. Q. Sun, K. Ueno, H. Misawa: In situ investigation of the shrinkage of photopolymerized micro–nanostructures: The effect of the drying process, Opt. Lett. 37, 710–712 (2012)

    Article  Google Scholar 

  84. V. Mizeikis, S. Juodkazis, R. Tarozaite, J. Juodkazyte, K. Juodkazis, H. Misawa: Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region, Opt. Express 15, 8454–8464 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bharat Bhushan

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Matsui, S., Misawa, H., Sun, Q. (2017). 3-D Nanostructure Fabrication by Focused-Ion Beam, Electron- and Laser Beam. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54357-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54357-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54355-9

  • Online ISBN: 978-3-662-54357-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics