Skip to main content
Log in

Synthesis of Ag–ZnO powders by means of a mechanochemical process

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nowadays, Ag–CdO alloys are widely used in electrical contact applications, because of their good electrical and thermal conductivity is as well as high resistance to arc erosion and contact welding. Considering the restricted use of Cd due to its toxicity, it is necessary to find a material that can replace those alloys. The objective of this work was to study the possibility of obtaining an Ag–ZnO alloy from an Ag–Zn solid solution powders by means of a mechanochemical method. The mechanochemical process was carried out in a SPEX 8000D mill, under air and with ethanol as a reaction agent. Based on the results obtained, it can be concluded that an Ag–ZnO alloy with a fine and uniform ZnO distribution in the Ag matrix can be obtained by applying the mechanochemical process for 25 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Wojtasik, W. Missol, Met. Powder Rep. 59, 34 (2004)

    Article  Google Scholar 

  2. S. Kabayama, E. Kamijyo, U. S. Patent No. 3607244, 21 Sept 1971

  3. J. Han, Q. Shang, Y. Du, Health 1, 159 (2009)

    Article  Google Scholar 

  4. J. Bezjak, Int. J. Sci. Eng. Res. 3, 1 (2012)

    Google Scholar 

  5. V. Ćosović, A. Ćosović, N. Talijan, D. Živković, D. Manasijević, D. Minić, J. Alloy. Compd. 567, 33 (2013)

    Article  Google Scholar 

  6. C.P. Wu, D.Q. Yi, J. Li, L.R. Xiao, B. Wang, F. Zheng, J. Alloy. Compd. 457, 565 (2008)

    Article  Google Scholar 

  7. D.Q. Yi, C.P. Wu, S. Goto, C.H. Xu, J. Li, B. Wang, L.R. Xiao, F. Zheng, Mater. Corros. 61, 590 (2010)

    Article  Google Scholar 

  8. Z. Yang, P. Zhang, Y. Ding, Y. Jiang, Z. Long, W. Dai, Mater. Res. Bull. 46, 1625 (2011)

    Article  Google Scholar 

  9. Y.F. Wang, J.H. Yao, G. Jia, H. Lei, Acta Physica Polonica 119, 451 (2011)

    Google Scholar 

  10. Y. Lu, Y. Lin, D. Wang, L. Wang, T. Xie, T. Jiang, J. Phys. D.: Appl Phys. 44, 315502 (2011)

    Article  ADS  Google Scholar 

  11. B. Divband, M. Khatamian, G.R. Kazemi Eslamian, M. Darbandi, Appl. Surf. Sci. 284, 80 (2013)

    Article  ADS  Google Scholar 

  12. Q. Simon, D. Barraca, D. Bekermann, A. Gasparotto, C. Maccato, E. Comini, V. Gombac, P. Fornasiero, O. Lebedev, S. Turner, A. Devi, R. Fischer, G. Van Tendeloo, Int. J. Hydrogen Energy 36, 15527 (2011)

    Article  Google Scholar 

  13. K.B. Dermenci, B. Genc, B. Ebin, T. Olmez-Hanci, S. Gürmer, J. Alloy. Compd. 586, 267 (2014)

    Article  Google Scholar 

  14. I. Matai, A. Sachdev, P. Dubey, U. Kumar, B. Bhushan, P. Gopinath, Colloids Surf. B: Biointerfaces 115, 359 (2014)

    Article  Google Scholar 

  15. Y. Zhang, X. Gao, L. Zhi, X. Liu, W. Jiang, Y. Sun, J. Yang, J. Inorg. Biochem. 130, 74 (2014)

    Article  Google Scholar 

  16. S.E. Aghili, M.H. Enayati, F. Karimzadeh, Mater. Manuf. Process. 27, 1348 (2012)

    Article  Google Scholar 

  17. R. Yimnirun, X. Tan, S. Ananta, S. Wongsaenmai, Appl. Phys. A 88, 323 (2007)

    Article  ADS  Google Scholar 

  18. W.H. Seung, J. Joayoung, H.Y. Dang, Appl. Phys. A (2013). doi:10.1007/s00339-013-7768-2

    Article  Google Scholar 

  19. P. Baláž, A. Calka, A. Zorkovská, M. Baláž, Mater. Manuf. Process. 28, 343 (2013)

    Article  Google Scholar 

  20. P.B. Joshi, V.J. Rao, B.R. Rehani, A. Pratap, Indian J. Pure Appl. Phys. 45, 9 (2007)

    Google Scholar 

  21. D. Guzmán, O. Rivera, C. Aguilar, S. Ordoñez, C. Martínez, D. Serafini, P. Rojas, Trans. Nonferrous Met. Soc. China 23, 2071 (2013)

    Article  Google Scholar 

  22. H. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)

    Article  Google Scholar 

  23. B. Cullity, X-ray diffraction, 2nd edn. (Addison-Wesley Publishing Inc, USA, 1978), pp. 284–285

    Google Scholar 

  24. D. Guzmán, C. Aguilar, D. Serafini, P. Rojas, S. Ordoñez, J.F. Olivares-Pacheco, DYNA-Colombia 81, 144 (2014)

  25. J. Eckert, J.C. Holzer, C.E. Krill III, W.L. Johnson, J. Mater. Res. 7, 1751 (1992)

    Article  ADS  Google Scholar 

  26. R.M. Davis, B. Mcdermott, C. Koch, Metall. Mater. Trans. A 19, 2867 (1988)

    Article  ADS  Google Scholar 

  27. M. Azabou, H. Ibn Gharsallah, L. Escoda, J. Suñol, A.W. Kolsi, M. Khitouni, Powder Technol. 224, 338 (2012)

    Article  Google Scholar 

  28. Q. Zeng, I. Baker, Intermetallics 14, 396 (2006)

    Article  Google Scholar 

  29. S. Gavriliu, M. Lungu, E. Enescu, S. Nitu, D. Patroi, Optoelectron. Adv. Mater. 3, 688 (2009)

    Google Scholar 

  30. P.B. Joshia, P.S. Krishnan, R.H. Patel, V.L. Gadgeel, P. Ramakrishnan, V.K. Kaushik, Mater. Lett. 33, 137 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the “Fondo Nacional Desarrollo Científico y Tecnológico de Chile,” FONDECYT Project No. 11100284.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Guzmán.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzmán, D., Muñoz, P., Aguilar, C. et al. Synthesis of Ag–ZnO powders by means of a mechanochemical process. Appl. Phys. A 117, 871–875 (2014). https://doi.org/10.1007/s00339-014-8447-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8447-7

Keywords

Navigation