Skip to main content
Log in

Dielectric properties and microstructural characterization of cubic pyrochlored bismuth magnesium niobates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Cubic bismuth pyrochlores in the \(\mathrm{Bi}_{2}\mathrm{O}_{3}\)–MgO–\(\mathrm{Nb}_{2}\mathrm{O}_{5}\) system have been investigated as promising dielectric materials due to their high dielectric constant and low dielectric loss. Here, we report on the dielectric properties and microstructures of cubic pyrochlored \(\mathrm{Bi}_{1.5}\mathrm{MgNb}_{1.5}\mathrm{O}_{7}\) (BMN) ceramic samples synthesized via solid-state reactions. The dielectric constant (measured at 1 MHz) was measured to be \({\sim}120\) at room temperature, and the dielectric loss was as low as 0.001. X-ray diffraction patterns demonstrated that the BMN samples had a cubic pyrochlored structure, which was also confirmed by selected area electron diffraction (SAED) patterns. Raman spectrum revealed more than six vibrational models predicted for the ideal pyrochlore structure, indicating additional atomic displacements of the A and \(\mathrm{O}'\) sites from the ideal atomic positions in the BMN samples. Structural modulations of the pyrochlore structure along the [110] and [121] directions were observed in SAED patterns and high-resolution transmission electron microscopy (HR-TEM) images. In addition, HR-TEM images also revealed that the grain boundaries (GBs) in the BMN samples were much clean, and no segregation or impure phase was observed forming at GBs. The high dielectric constants in the BMN samples were ascribed to the long-range ordered pyrochlore structures since the electric dipoles formed at the superstructural direction could be enhanced. The low dielectric loss was attributed to the existence of noncontaminated GBs in the BMN ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.A. Subramanian, G. Aravamudan, G.V. SubbaRao, Prog. Solid State Chem. 15, 55 (1983)

    Article  Google Scholar 

  2. M. Lanagan, D. Anderson, A. Baker, J. Nino, S. Perini, C.A. Randall, T.R. Strout, T. Sogabe, H. Youn, in Proceedings of the International Symposium on Microelectronics, Baltimore, MD, ed. by J. Graves (2001), p. 155

    Google Scholar 

  3. S.W. Jiang, Y.R. Li, R.G. Li, N.D. Xiong, L.F. Tan, X.Z. Liu, B.W. Tao, Appl. Phys. Lett. 94, 162908 (2009)

    Article  ADS  Google Scholar 

  4. L.X. Li, X.Y. Zhang, L.J. Ji, P.F. Ning, Q.W. Liao, Ceram. Int. 38, 3541 (2012)

    Article  Google Scholar 

  5. L.B. Gao, S.W. Jiang, R.G. Li, B. Li, Y.R. Li, Thin Solid Films 520, 6295 (2012)

    Article  ADS  Google Scholar 

  6. R.A.M. Osman, N. Masó, A.R. West, J. Am. Ceram. Soc. 95, 296 (2012)

    Article  Google Scholar 

  7. R.A. McCauley, J. Opt. Soc. Am. 63, 721 (1973)

    Article  ADS  Google Scholar 

  8. S. Brown, H.C. Gupta, J.A. Alonso, M.J. Martinez-Lope, J. Raman Spectrosc. 34, 240 (2003)

    Article  ADS  Google Scholar 

  9. D.J. Arenas, L.V. Gasparov, W. Qiu, J.C. Nino, C.H. Patterson, D.B. Tanner, Phys. Rev. B 82, 214302 (2010)

    Article  ADS  Google Scholar 

  10. H.C. Gupta, S. Brown, N. Rani, V.B. Gohel, J. Raman Spectrosc. 32, 41 (2001)

    Article  ADS  Google Scholar 

  11. A. Garbout, S. Bouattour, A.W. Kolsi, J. Alloys Compd. 469, 229 (2009)

    Article  Google Scholar 

  12. M. Mączka, J. Hanuza, K. Hermanowicz, A.F. Fuentes, K. Matsuhira, Z. Hiroi, J. Raman Spectrosc. 39, 537 (2008)

    Article  Google Scholar 

  13. F. Rosi, V. Manuali, C. Miliani, B.G. Brunetti, A. Sgamellotti, T. Grygar, D. Hradil, J. Raman Spectrosc. 40, 107 (2009)

    Article  ADS  Google Scholar 

  14. M. Mączka, M.L. Sanjuán, A.F. Fuentes, L. Macalik, J. Hanuza, K. Matsuhira, Z. Hiroi, Phys. Rev. B 79, 214437 (2009)

    Article  ADS  Google Scholar 

  15. T. Hahn, in International Tables of Crystallography, Vol. A (Kluwer Academic, Dordrecht, 1996)

    Google Scholar 

  16. I. Levin, T.G. Amos, J.C. Nino, T.A. Vanderah, C.A. Randall, M.T. Lanagan, J. Solid State Chem. 69, 168 (2002)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Grant Nos. 10874065, 11174122, and 11134004), key projects from Ministry of Science and Technology of China (Grant Nos. 2009CB929503 and 2009ZX02101-4), and Analysis & Test Fund of Nanjing University. T. Al-Kassab acknowledges the generous support of the KAUST baseline funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhua Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Zhang, Z., Zhu, X. et al. Dielectric properties and microstructural characterization of cubic pyrochlored bismuth magnesium niobates. Appl. Phys. A 115, 661–666 (2014). https://doi.org/10.1007/s00339-013-7843-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7843-8

Keywords

Navigation