Skip to main content

Advertisement

Log in

The biology and ecology of coral rubble and implications for the future of coral reefs

  • Review
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Structural complexity provided by the living coral reef framework is the basis of the rich and dynamic biodiversity in coral reefs. In many cases today, the reduction in habitat complexity, from live coral to dead coral and rubble, has altered the abundance and diversity of many reef species with impacts on community structure, food webs and ecosystem functioning. Yet, the complex microhabitat provided by rubble can too support a great density and diversity of reef organisms, often with explicit roles in ecosystem functioning. This literature review synthesises available knowledge on the biology and ecology of coral rubble. We highlight key methodologies used to sample rubble communities, and the biological and ecological consequences of ongoing habitat degradation from coral to rubble reefs under future scenarios. We conclude with a number of key research themes that may enhance our capacity to understand the current contribution of rubble communities to reef functioning and predict their ability to modulate future impacts as net framework erosion amplifies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abele LG (1976) Comparative species richness in fluctuating and constant environments - coral-associated decapod crustaceans. Science 192:461–463

    CAS  PubMed  Google Scholar 

  • Ackerman JL, Bellwood DR (2000) Reef fish assemblages: a re-evaluation using enclosed rotenone stations. Mar Ecol Prog Ser 206:227–237

    Google Scholar 

  • Adam TC, Kelley M, Ruttenberg BI, Burkepile DE (2015) Resource partitioning along multiple niche axes drives functional diversity in parrotfishes on Caribbean coral reefs. Oecologia 179:1173–1185

    PubMed  Google Scholar 

  • Adams AJ, Ebersole JP (2002) Use of back-reef and lagoon habitats by coral reef fishes. Mar Ecol Prog Ser 228:213–226

    Google Scholar 

  • Adams AJ, Ebersole JP (2004) Processes influencing recruitment inferred from distributions of coral reef fishes. B Mar Sci 75:153–174

    Google Scholar 

  • Adjeroud M, Chancerelle Y, Schrimm M, Perez T, Lecchini D, Galzin R, Salvat B (2005) Detecting the effects of natural disturbances on coral assemblages in French Polynesia: a decade survey at multiple scales. Aquat Living Resour 18:111–123

    Google Scholar 

  • Aguado MT, Murray A, Hutchings P (2015) Syllidae (annelida: phyllodocida) from Lizard Island, great barrier reef, Australia. Zootaxa 4019:35–60

    PubMed  Google Scholar 

  • Ahmadia GN, Sheard LJ, Pezold FL, Smith DJ (2012) Cryptobenthic fish assemblages across the coral reef-seagrass continuum in SE Sulawesi, Indonesia. Aquat Biol 16:125–135

    Google Scholar 

  • Ahmadia GN, Tornabene L, Smith DJ, Pezold FL (2018) The relative importance of regional, local, and evolutionary factors structuring cryptobenthic coral-reef assemblages. Coral Reefs 37:279–293

    Google Scholar 

  • Ainsworth CH, Mumby PJ (2015) Coral-algal phase shifts alter fish communities and reduce fisheries production. Global Change Biol 21:165–172

    Google Scholar 

  • Aktani U (2003) Fish communities as related to substrate characteristics in the coral reefs of Kepulauan Seribu Marine National Park, Indonesia, five years after stopping blast fishing practices. University of Bremen

    Google Scholar 

  • Almany GR (2004a) Differential effects of habitat complexity, predators and competitors on abundance of juvenile and adult coral reef fishes. Oecologia 141:105–113

    PubMed  Google Scholar 

  • Almany GR (2004b) Does increased habitat complexity reduce predation and competition in coral reef fish assemblages? Oikos 106:275–284

    Google Scholar 

  • Alongi DM, Trott LA, Rachmansyah TF, McKinnon AD, Undu MC (2008) Growth and development of mangrove forests overlying smothered coral reefs, Sulawesi and Sumatra, Indonesia. Mar Ecol Prog Ser 370:97–109

    CAS  Google Scholar 

  • Alvarado JJ, Grassian B, Cantera-Kintz JR, Carballo JL, Londono-Cruz E (2017) Coral reef bioerosion in the eastern tropical Pacific. Coral Reefs World 8:369–403

    Google Scholar 

  • Alvarez-Filip L, Dulvy NK, Gill JA, Cote IM, Watkinson AR (2009) Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. P Roy Soc B-Biol Sci 276:3019–3025

    Google Scholar 

  • Alvarez-Filip L, Paddack MJ, Collen B, Robertson DR, Cote IM (2015) Simplification of Caribbean reef-fish assemblages over decades of coral reef degradation. PLoS ONE 10(4):e0126004

    PubMed  PubMed Central  Google Scholar 

  • Alzate A, Zapata FA, Giraldo A (2014) A comparison of visual and collection-based methods for assessing community structure of coral reef fishes in the Tropical Eastern Pacific. Rev Biol Trop 62:359–371

    Google Scholar 

  • Amato KR, Emel SL, Lindgren CA, Sullan KM, Wright PR, Gilbert JJ (2008) Covering behavior of two co-occurring Jamaican sea urchins: differences in the amount of covering and selection of covering material. B Mar Sci 82:255–261

    Google Scholar 

  • Anderson ME (2005) Three new species of Microbrotula (Teleostei : Ophidiiformes : Bythitidae) from the Indo-West Pacific. Zootaxa 1006(1):33–42

    Google Scholar 

  • Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. P Natl Acad Sci USA 105:17442–17446

    CAS  Google Scholar 

  • Arias-Gonzalez JE, Delesalle B, Salvat B, Galzin R (1997) Trophic functioning of the Tiahura reef sector, Moorea Island, French Polynesia. Coral Reefs 16:231–246

    Google Scholar 

  • Bahrndorff S, Løfstedt M (2004) Commensal amphipods in ascidians and sponges off Phuket Island. Phuket Marine Biol Center Res Bull 65:45–54

    Google Scholar 

  • Bailey-Brock J, Brock R, Kam A, Fukunaga A, Akiyama H (2007) Anthropogenic disturbance on shallow cryptofaunal communities in a marine life conservation district on Oahu. Hawaii Int Rev Hydrobiol 92:291–300

    Google Scholar 

  • Baird TA, Baird TD (1992) Colony formation and some possible benefits and costs of gregarious living in the territorial sand tilefish, Malacanthus plumieri. B Mar Sci 50:56–65

    Google Scholar 

  • Baird TA, Baird TD (2006) Phenotypic plasticity in the reproductive behavior of female sand tilefish, Malacanthus plumieri. Ethology 112:52–63

    Google Scholar 

  • Bajaj K (2019) Natural bioactive cyclic peptides and peptidomimetics Chapter 9. In: Atta ur R (eds.) Studies in natural products chemistry. Elsevier, (pp 343–376)

  • Bak R (1976) The growth of coral colonies and the importance of crustose coralline algae and burrowing sponges in relation with carbonate accumulation. Neth J Sea Res 10:285–337

    Google Scholar 

  • Bak RPM, Lambrechts DYM, Joenje M, Nieuwland G, VanVeghel MLJ (1996) Long-term changes on coral reefs in booming populations of a competitive colonial ascidian. Mar Ecol Prog Ser 133:303–306

    Google Scholar 

  • Bakus GJ (1966) Some relationships of fishes to benthic organisms on coral reefs. Nature 210:280–290

    Google Scholar 

  • Baldock TE, Shabani B, Callaghan DP, Hu ZF, Mumby PJ (2020) Two-dimensional modelling of wave dynamics and wave forces on fringing coral reefs. Coast Eng 155:103594

    Google Scholar 

  • Banta WC, Carson RJ (1977) Bryozoa from cost rica.

  • Barnes DK (1999) High diversity of tropical intertidal zone sponges in temperature, salinity and current extremes. Afr J Ecol 37:424–434

    Google Scholar 

  • Barott KL, Caselle JE, Dinsdale EA, Friedlander AM, Maragos JE, Obura D, Rohwer FL, Sandin SA, Smith JE, Zgliczynski B (2010) The lagoon at caroline/millennium atoll, republic of Kiribati: natural history of a nearly pristine ecosystem. PLoS ONE 5(6):e10950

    PubMed  PubMed Central  Google Scholar 

  • Barrett GA, Revell D, Harding L, Mills I, Jorcin A, Stiefel KM (2019) Tool use by four species of Indo-Pacific sea urchins. J Mar Sci Eng 7:69

    Google Scholar 

  • Bartholomew A, Diaz RJ, Cicchetti G (2000) New dimensionless indices of structural habitat complexity: predicted and actual effects on a predator’s foraging success. Mar Ecol Prog Ser 206:45–58

    Google Scholar 

  • Bell JJ (2008) The functional roles of marine sponges. Estuar Coast Shelf S 79:341–353

    Google Scholar 

  • Bell SS, Hicks GR (1991) Marine landscapes and faunal recruitment: a field test with seagrasses and copepods. Mar Ecol Prog Ser, 61–68

  • Bellwood D (1995a) Direct estimate of bioerosion by two parrotfish species, Chlorurus gibbus and C. sordidus, on the great barrier reef Australia. Marine Biol 121:419–429

    Google Scholar 

  • Bellwood DR (1995b) Carbonate transport and within reef patterns of bioerosion and sediment release by parrotfishes (family Scaridae) on the great barrier reef. Mar Ecol Prog Ser 117:127–136

    Google Scholar 

  • Bellwood DR, Wainwright PC, Fulton CJ, Hoey AS (2006) Functional versatility supports coral reef biodiversity. P Roy Soc B-Biol Sci 273:101–107

    CAS  Google Scholar 

  • Bellwood DR, Baird AH, Depczynski M, Gonzalez-Cabello A, Hoey AS, Lefevre CD, Tanner JK (2012) Coral recovery may not herald the return of fishes on damaged coral reefs. Oecologia 170:567–573

    PubMed  Google Scholar 

  • Bellwood DR, Pratchett MS, Morrison TH, Gurney GG, Hughes TP, Alvarez-Romero JG, Day JC, Grantham R, Grech A, Hoey AS, Jones GP, Pandolfi JM, Tebbett SB, Techera E, Weeks R, Cumming GS (2019) Coral reef conservation in the anthropocene: confronting spatial mismatches and prioritizing functions. Biol Conserv 236:604–615

    Google Scholar 

  • Beltran Y, Cerqueda-Garcia D, Tas N, Thome PE, Iglesias-Prieto R, Falcon LI (2016) Microbial composition of biofilms associated with lithifying rubble of Acropora palmata branches. Fems Microbiol Ecol 92(1)

  • Bergeron ZL, Chun JB, Baker MR, Sandall DW, Peigneur S, Yu PYC, Thapa P, Milisen JW, Tytgat J, Livett BG, Bingham JP (2013) A “conovenomic” analysis of the milked venom from the mollusk-hunting cone snail conus textile-the pharmacological importance of post-translational modifications. Peptides 49:145–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Best BA, Winston JE (1984) Skeletal strength of encrusting cheilostome bryozoans. Biol Bull 167:390–409

    PubMed  Google Scholar 

  • Beukers-Stewart BD, Jones GP (2004) The influence of prey abundance on the feeding ecology of two piscivorous species of coral reef fish. J Exp Mar Biol Ecol 299:155–184

    Google Scholar 

  • Bianchi C, Morri C, Pichon M, Benzoni F, Colantoni P, Baldelli G, Sandrini M. (2006). Dynamics and pattern of coral recolonization following the 1998 bleaching event in the reefs of the Maldives. In: International coral reef symposium. Japanese coral reef society, (pp 30–37)

  • Biondi P, Masucci GD, Reimer JD (2019) Effect of coral reef restoration on demersal biodiversity in Okinawa, Japan. PeerJ Preprints 7:e27906–e27901

    Google Scholar 

  • Bishop MJ (2005) Artificial sampling units: a tool for increasing the sensitivity of tests for impact in soft sediments. Environ Monit Assess 107:203–220

    PubMed  Google Scholar 

  • Blanchon P, Jones B, Kalbfleisch W (1997) Anatomy of a fringing reef around grand Cayman: storm rubble, not coral framework. J Sediment Res 67:1–16

    Google Scholar 

  • Blanchon P, Richards S, Bernal JP, Cerdeira-Estrada S, Ibarra MS, Corona-Martinez L, Martell-Dubois R (2017) Retrograde accretion of a Caribbean fringing reef controlled by hurricanes and sea-level rise. Front Earth Sci. https://doi.org/10.3389/feart.2017.00078

    Article  Google Scholar 

  • Boissin E, Hoareau TB, Paulay G, Bruggemann JH (2016) Shallow-water reef ophiuroids (echinodermata: ophiuroidea) of reunion (Mascarene Islands), with biogeographic considerations. Zootaxa 4098:273–297

    PubMed  Google Scholar 

  • Boström-Einarsson L, Babcock RC, Bayraktarov E, Ceccarelli D, Cook N, Ferse SC, Hancock B, Harrison P, Hein M, Shaver E (2020) Coral restoration–a systematic review of current methods, successes, failures and future directions. PLoS ONE 15:e0226631

    PubMed  PubMed Central  Google Scholar 

  • Bourne DG, Dennis PG, Uthicke S, Soo RM, Tyson GW, Webster N (2013) Coral reef invertebrate microbiomes correlate with the presence of photosymbionts. Isme J 7:1452–1458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bourrouilh-Le Jan F (1998) The role of high-energy events (hurricanes and/or tsunamis) in the sedimentation, diagenesis and karst initiation of tropical shallow water carbonate platforms and atolls. Sediment Geol 118:3–36

    CAS  Google Scholar 

  • Brandl SJ, Emslie MJ, Ceccarelli DM (2016) Habitat degradation increases functional originality in highly diverse coral reef fish assemblages. Ecosphere 7:e01557

    Google Scholar 

  • Brandl SJ, Goatley CHR, Bellwood DR, Tornabene L (2018) The hidden half: ecology and evolution of cryptobenthic fishes on coral reefs. Biol Rev Camb Philos Soc 93:1846–1873

    PubMed  Google Scholar 

  • Brandl SJ, Tornabene L, Goatley CHR, Casey JM, Morais RA, Cote IM, Baldwin CC, Parravicini V, Schiettekatte NMD, Bellwood DR (2019) Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. Science 364:1189–1192

    CAS  PubMed  Google Scholar 

  • Brandl SJ, Casey JM, Meyer CP (2020) Dietary and habitat niche partitioning in congeneric cryptobenthic reef fish species. Coral Reefs 39:305–317

    Google Scholar 

  • Brawley SH, Adey WH (1981) The effect of micrograzers on algal community structure in a coral reef microcosm. Mar Biol 61:167–177

    Google Scholar 

  • Bries JM, Debrot AO, Meyer DL (2004) Damage to the leeward reefs of Curacao and Bonaire, Netherlands Antilles from a rare storm event: hurricane Lenny, November 1999. Coral Reefs 23:297–307

    Google Scholar 

  • Brock RE, Brock JH (1977) Method for quantitatively assessing infaunal community in coral rock. Limnol Oceanogr 22:948–951

    Google Scholar 

  • Brock RE, Smith SV (1980) Response of coral reef cryptofaunal communities to food and space. Am Zool 20:744–744

    Google Scholar 

  • Buttner H (1996) Rubble mounds of sand tilefish Malacanthus plumieri (Bloch, 1787) and associated fishes in Colombia. B Mar Sci 58:248–260

    Google Scholar 

  • Byrne M, Walker SJ (2007) Distribution and reproduction of intertidal species of Aquilonastra and Cryptasterina (Asterinidae) from one tree reef, southern great barrier reef. B Mar Sci 81:209–218

    Google Scholar 

  • Caley MJ (1995) Community dynamics of tropical reef fishes: Local patterns between latitudes. Mar Ecol Prog Ser 129:7–18

    Google Scholar 

  • Callaghan DP, Mumby PJ, Mason MS (2020) Near-reef and nearshore tropical cyclone wave climate in the great barrier reef with and without reef structure. Coast Eng 157:103652

    Google Scholar 

  • Callaway R (2018) Interstitial space and trapped sediment drive benthic communities in artificial shell and rock reefs. Front Marine Sci. https://doi.org/10.3389/fmars.2018.00288

    Article  Google Scholar 

  • Cameron CM, Pausch RE, Miller MW (2016) Coral recruitment dynamics and substrate mobility in a rubble-dominated back reef habitat. B Mar Sci 92:123–136

    Google Scholar 

  • Capa M, Faroni-Perez L, Hutchings P (2015) Sabellariidae from Lizard Island, Great Barrier Reef, including a new species of Lygdamis and notes on external morphology of the median organ. Zootaxa 4019:184–206

    PubMed  Google Scholar 

  • Carballo JL, Bautista-Guerrero E, Leyte-Morales GE (2008) Boring sponges and the modeling of coral reefs in the east Pacific Ocean. Mar Ecol Prog Ser 356:113–122

    Google Scholar 

  • Cardini U, Bednarz VN, Foster RA, Wild C (2014) Benthic N-2 fixation in coral reefs and the potential effects of human- induced environmental change. Ecol Evol 4:1706–1727

    PubMed  PubMed Central  Google Scholar 

  • Carvalho S, Aylagas E, Villalobos R, Kattan Y, Berumen M, Pearman JK (2019) Beyond the visual: using metabarcoding to characterize the hidden reef cryptobiome. Proc Royal Soc b: Biol Sci 286:20182697

    CAS  Google Scholar 

  • Casareto B, Suzuki Y, Fukami K, Yoshida K. (2000). Particulate organic carbon budget and flux in a fringing coral reef at Miyako Island, Okinawa, Japan in July 1996. In: Proceedings of the 9th international coral reef symposium, (pp 95–100)

  • Casareto BE, Charpy L, Langlade MJ, Suzuki T, Ohba H, Niraula M, Suzuki Y. (2008). Nitrogen fixation in coral reef environments. In: Proceedings of the 11th international coral reef symposium, Ft. Lauderdale, Florida.

  • Casareto BE, Bagooli R, Fujimura H, Suzuki Y (2017) Chemical and biological characteristics of Albion reef in the South-West of Mauritius Island with special reference to primary production and N2 fixation of benthic substrata. Western Ind Ocean J Marine Sci, 85–93

  • Casey JM, Ainsworth TD, Choat JH, Connolly SR (2014) Farming behaviour of reef fishes increases the prevalence of coral disease associated microbes and black band disease. P Roy Soc B-Biol Sci 281(1788):20141032

    Google Scholar 

  • Castell LL (1997) Population studies of juvenile Trochus niloticus on a reef flat on the north-eastern Queensland coast, Australia. Mar Freshwater Res 48:211–217

    Google Scholar 

  • Ceccarelli DM (2007) Modification of benthic communities by territorial damselfish: a multi-species comparison. Coral Reefs 26:853–866

    Google Scholar 

  • Ceccarelli DM, Emslie MJ, Richards ZT (2016) Post-disturbance stability of fish assemblages measured at coarse taxonomic resolution masks change at finer scales. PLoS ONE 11:e0156232

    PubMed  PubMed Central  Google Scholar 

  • Ceccarelli DM, McLeod IM, Boström-Einarsson L, Bryan SE, Chartrand KM, Emslie MJ, Gibbs MT, Gonzalez Rivero M, Hein MY, Heyward A (2020) Substrate stabilisation and small structures in coral restoration: State of knowledge, and considerations for management and implementation. PLoS ONE 15:e0240846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chabanet P, Adjeroud M, Andrefouet S, Bozec YM, Ferraris J, Garcia-Charton JA, Schrimm M (2005) Human-induced physical disturbances and their indicators on coral reef habitats: a multi-scale approach. Aquat Living Resour 18:215–230

    Google Scholar 

  • Chadwick NE, Morrow KM (2011) Competition among sessile organisms on coral reefs. Coral Reefs: An Ecosystem in Transition, 347–371

  • Chamika W, Fairoz M (2018) Coral rubble and rock associated crypto-fauna at Polhena reef. Sri Lanka

    Google Scholar 

  • Chapman M, Underwood A (2008) Scales of variation of gastropod densities over multiple spatial scales: comparison of common and rare species. Mar Ecol Prog Ser 354:147–160

    Google Scholar 

  • Charpy L, Casareto BE, Langlade MJ, Suzuki Y (2012) Cyanobacteria in coral reef ecosystems: a review. J Marine Biol 2012:1–9

    Google Scholar 

  • Chazaro-Olvera S, Winfield I, Abarca-Avila M, Ortiz M, Lozano-Aburto M (2018) Coral reef tanaidacean assemblages along the SW and SE Gulf of Mexico: biodiversity, geographic distribution and community structure. J Nat Hist 52:1091–1113

    Google Scholar 

  • Cheal AJ, Macneil MA, Emslie MJ, Sweatman H (2017) The threat to coral reefs from more intense cyclones under climate change. Global Change Biol 23:1511–1524

    Google Scholar 

  • Cheroske AG, Williams SL, Carpenter RC (2000) Effects of physical and biological disturbances on algal turfs in Kaneohe Bay. Hawaii J Exp Mar Biol Ecol 248:1–34

    CAS  PubMed  Google Scholar 

  • Choi DR (1984) Ecological succession of reef cavity-dwellers (coelobites) in coral rubble. B Mar Sci 35:72–79

    Google Scholar 

  • Choi DR, Ginsburg RN (1983) Distribution of coelobites (cavity-dwellers) in coral rubble across the Florida reef tract. Coral Reefs 2:165–172

    Google Scholar 

  • Cinner JE, Pratchett MS, Graham NAJ, Messmer V, Fuentes MMPB, Ainsworth T, Ban N, Bay LK, Blythe J, Dissard D, Dunn S, Evans L, Fabinyi M, Fidelman P, Figueiredo J, Frisch AJ, Fulton CJ, Hicks CC, Lukoschek V, Mallela J, Moya A, Penin L, Rummer JL, Walker S, Williamson DH (2016) A framework for understanding climate change impacts on coral reef social-ecological systems. Reg Environ Change 16:1133–1146

    Google Scholar 

  • Clark S, Edwards AJ (1995) Coral transplantation as an aid to reef rehabilitation: evaluation of a case study in the Maldive Islands. Coral Reefs 14:201–213

    Google Scholar 

  • Cleary DFR, Polonia ARM, Renema W, Hoeksema BW, Rachello-Dolmen PG, Moolenbeek RG, Budiyanto A, Yahmantoro TY, Giyanto DSGA, van Reine WFP, Hariyanto R, Gittenberger A, Rikoh MS, de Voogd NJ (2016) Variation in the composition of corals, fishes, sponges, echinoderms, ascidians, molluscs, foraminifera and macroalgae across a pronounced in-to-offshore environmental gradient in the Jakarta Bay-Thousand Islands coral reef complex. Mar Pollut Bull 110:701–717

    CAS  PubMed  Google Scholar 

  • Clements M, Wolfe K, Schwartz K, Byrne M (2019) Forever fissiparous: asexual propagation and stable demography in a tropical and geographically isolated asterinid sea star. Mar Biol 166:69

    Google Scholar 

  • Coen LD (1988) Herbivory by crabs and the control of algal epibionts on Caribbean host corals. Oecologia 75:198–203

    CAS  PubMed  Google Scholar 

  • Coker DJ, DiBattista JD, Sinclair-Taylor TH, Berumen ML (2018) Spatial patterns of cryptobenthic coral-reef fishes in the Red Sea. Coral Reefs 37:193–199

    Google Scholar 

  • Coles SL (1980) Species diversity of decapods associated with living and dead reef coral Pocillopora meandrina. Mar Ecol Prog Ser 2:281–291

    Google Scholar 

  • Colin PL, Laroche WA, Brothers EB (1997) Ingress and settlement in the Nassau grouper, Epinephelus striatus (Pisces: Serranidae), with relationship to spawning occurrence. B Mar Sci 60:656–667

    Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs - high diversity of trees and corals is maintained only in a non-equilibrium state. Science 199:1302–1310

    CAS  PubMed  Google Scholar 

  • Connell JH (1997) Disturbance and recovery of coral assemblages. Coral Reefs 16:S101–S113

    Google Scholar 

  • Connell SD (1998) Patterns of piscivory by resident predatory reef fish at one tree reef, great barrier reef. Mar Freshwater Res 49:25–30

    Google Scholar 

  • Connell JH, Hughes TP, Wallace CC (1997) A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol Monogr 67:461–488

    Google Scholar 

  • Cornwall CE, Diaz-Pulido G, Comeau S (2019) Impacts of ocean warming on coralline algae: knowledge gaps and key recommendations for future research. Front Mar Sci 6:186

    Google Scholar 

  • Corredor JE, Wilkinson CR, Vicente VP, Morell JM, Otero E (1988) Nitrate release by Caribbean reef sponges. Limnol Oceanogr 33:114–120

    CAS  Google Scholar 

  • Cortes J, Enochs IC, Sibaja-Cordero J, Hernandez L, Alvarado JJ, Breedy O, Cruz-Barraza JA, Esquivel-Garrote O, Fernandez-Garcia C, Hermosillo A, Kaiser KL, Medina-Rosas P, Morales-Ramirez A, Pacheco C, Perez-Matus A, Reyes-Bonilla H, Riosmena-Rodriguez R, Sanchez-Noguera C, Wieters EA, Zapata FA (2017) Marine Biodiversity of Eastern tropical pacific coral reefs. Coral Reefs World 8:203–250

    Google Scholar 

  • Costa ABHP, Valença APMC, Santos PJPd (2016) Is meiofauna community structure in artificial substrate units a good tool to assess anthropogenic impact in estuaries? Mar Pollut Bull 110:354–361

    CAS  PubMed  Google Scholar 

  • Coull BC, Wells J (1983) Refuges from fish predation: experiments with phytal meiofauna from the New Zealand rocky intertidal. Ecology 64:1599–1609

    Google Scholar 

  • Cowburn B, Moritz C, Grimsditch G, Solandt JL (2019) Evidence of coral bleaching avoidance, resistance and recovery in the Maldives during the 2016 mass-bleaching event. Mar Ecol Prog Ser 626:53–67

    Google Scholar 

  • Cox G, Larkum A (1983) A diatom apparently living in symbiosis with a sponge. B Mar Sci 33:943–945

    Google Scholar 

  • Crossland CJ, Barnes DJ (1976) Acetylene-reduction by coral skeletons. Limnol Oceanogr 21:153–156

    Google Scholar 

  • Cummings E, Ruber E (1987) Copepod colonization of natural and artificial substrates in a salt marsh pool. Estuar Coast Shelf Sci 25:637–645

    Google Scholar 

  • Dahl AL (1973) Surface-area in ecological analysis - quantification of benthic coral reef algae. Mar Biol 23:239–249

    Google Scholar 

  • Dahlgren CP, Eggleston DB (2000) Ecological processes underlying ontogenetic habitat shifts in a coral reef fish. Ecology 81:2227–2240

    Google Scholar 

  • Darling ES, Graham NAJ, Januchowski-Hartley FA, Nash KL, Pratchett MS, Wilson SK (2017) Relationships between structural complexity, coral traits, and reef fish assemblages. Coral Reefs 36:561–575

    Google Scholar 

  • Darumas U, Chavanich S, Suwanborirux K (2007) Distribution patterns of the renieramycin-producing sponge, Xestospongia sp., and its association with other reef organisms in the Gulf of Thailand. Zool Stud 46:695–704

    Google Scholar 

  • Darwin TJ, Krapp-Schickel T (2011) A new species of leucothoid amphipod, anamixis bananarama, sp. n, from shallow coral reefs in French Polynesia (crustacea, amphipoda, leucothoidae). Zookeys 92(1):8

    Google Scholar 

  • Davey M, Holmes G, Johnstone R (2008) High rates of nitrogen fixation (acetylene reduction) on coral skeletons following bleaching mortality. Coral Reefs 27:227–236

    Google Scholar 

  • David R, Uyarra MC, Carvalho S, Anlauf H, Borja A, Cahill AE, Carugati L, Danovaro R, De Jode A, Feral J-P (2019) Lessons from photo analyses of autonomous reef monitoring structures as tools to detect (bio-) geographical, spatial, and environmental effects. Mar Pollut Bull 141:420–429

    CAS  PubMed  Google Scholar 

  • de Voogd NJ, Becking LE, Cleary DFR (2009) Sponge community composition in the Derawan Islands, NE Kalimantan, Indonesia. Mar Ecol Prog Ser 396:169–180

    Google Scholar 

  • Deaker DJ, Aguera A, Lin HA, Lawson C, Budden C, Dworjanyn SA, Mos B, Byrne M (2020a) The hidden army: corallivorous crown-of-thorns seastars can spend years as herbivorous juveniles. Biol Lett 16(4):20190849

    PubMed  PubMed Central  Google Scholar 

  • Deaker DJ, Mos B, Lin H-A, Lawson C, Budden C, Dworjanyn SA, Byrne M (2020b) Diet flexibility and growth of the early herbivorous juvenile crown-of-thorns sea star, implications for its boom-bust population dynamics. PLoS ONE 15:e0236142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dechnik B, Webster JM, Nothdurft L, Webb GE, Zhao JX, Duce S, Braga JC, Harris DL, Vila-Concejo A, Puotinen M (2016) Influence of hydrodynamic energy on Holocene reef flat accretion, great barrier reef. Quaternary Res 85:44–53

    CAS  Google Scholar 

  • DeMartini EE (2004) Habitat and endemism of recruits to shallow reef fish populations: selection criteria for no-take MPAs in the NWHI coral reef ecosystem reserve. B Mar Sci 74:185–205

    Google Scholar 

  • DeMartini EE, Zgliczynski BJ, Boland RC, Friedlander AM (2009) Influences of wind-wave exposure on the distribution and density of recruit reef fishes at Kure and Pearl and Hermes Atolls, Northwestern Hawaiian Islands. Environ Biol Fish 85:319–332

    Google Scholar 

  • Dennis C, Aldhous P (2004) A tragedy with many players. Nature 430(6998):396–398

    CAS  PubMed  Google Scholar 

  • Depczynski M, Bellwood DR (2003) The role of cryptobenthic reef fishes in coral reef trophodynamics. Mar Ecol Prog Ser 256:183–191

    Google Scholar 

  • Depczynski M, Bellwood DR (2004) Microhabitat utilisation patterns in cryptobenthic coral reef fish communities. Mar Biol 145:455–463

    Google Scholar 

  • Depczynski M, Bellwood DR (2005) Wave energy and spatial variability in community structure of small cryptic coral reef fishes. Mar Ecol Prog Ser 303:283–293

    Google Scholar 

  • Depczynski M, Bellwood DR (2006) Extremes, plasticity, and invariance in vertebrate life history traits: Insights from coral reef fishes. Ecology 87:3119–3127

    PubMed  Google Scholar 

  • Depczynski M, Fulton CJ, Marnane MJ, Bellwood DR (2007) Life history patterns shape energy allocation among fishes on coral reefs. Oecologia 153:111–120

    PubMed  Google Scholar 

  • Desbiens A, Wolfe K (2020) Observations of juvenile Stichopus sp. on a coral reef in Palau. SPC Beche-De-Mer Information Bulletin 40:53–55

    Google Scholar 

  • Di Santo V, O’Boyle Lois A, Saylor RK, Dabruzzi TF, Covell MA, Katrina K, Scharer R, Seger K, Favazza N, Pomory CM, Bennett WA (2020) Coral loss alters guarding and farming behavior of a Caribbean damselfish. Marine Biol 167:8

    Google Scholar 

  • Diaz MC, Thacker RW, Rützler K, Piantoni Dietrich C (2007) Two new haplosclerid sponges from Caribbean Panama with symbiotic filamentous cyanobacteria, and an overview of sponge-cyanobacteria associations. Porifera Res: Biodiversity, Innov sustain, 31–39

  • Diaz MC, Rutzler K (2001) Sponges: an essential component of Caribbean coral reefs. B Mar Sci 69:535–546

    Google Scholar 

  • Dinsdale EA, Harriott VJ (2004) Assessing anchor damage on coral reefs: a case study in selection of environmental indicators. Environ Manage 33:126–139

    PubMed  Google Scholar 

  • Dirk C (1988) Short-term effects of territoriality of a tropical damselfish and experimental exclusion of large fishes on invertebrates in algal turfs. Mar Ecol Prog Ser 44:85–93

    Google Scholar 

  • Dollar SJ, Tribble GW (1993) Recurrent storm disturbance and recovery - a long-term study of coral communities in Hawaii. Coral Reefs 12:223–233

    Google Scholar 

  • Dominici-Arosemena A, Wolff M (2005) Reef fish community structure in Bocas del Toro (Caribbean, Panama): Gradients in habitat complexity and exposure. Caribb J Sci 41:613–637

    Google Scholar 

  • Done TJ (1992) Phase-shifts in coral reef communities and their ecological significance. Hydrobiologia 247:121–132

    Google Scholar 

  • Doropoulos C, Roff G, Bozec YM, Zupan M, Werminghausen J, Mumby PJ (2016) Characterizing the ecological trade-offs throughout the early ontogeny of coral recruitment. Ecol Monogr 86:20–44

    Google Scholar 

  • Dove SG, Brown KT, Van Den Heuvel A, Chai A, Hoegh-Guldberg O (2020) Ocean warming and acidification uncouple calcification from calcifier biomass which accelerates coral reef decline. Commun Earth Environ 1:55

    Google Scholar 

  • Duce S, Dechnik B, Webster JM, Hua Q, Sadler J, Webb GE, Nothdurft L, Salas-Saavedra M, Vila-Concejo A (2020) Mechanisms of spur and groove development and implications for reef platform evolution. Quat Sci Rev 231:106155

    Google Scholar 

  • Duckworth AR (2016) Substrate type affects the abundance and size of a coral-reef sponge between depths. Mar Freshwater Res 67:246–255

    Google Scholar 

  • Duckworth AR, Wolff CW (2011) Population dynamics and growth of two coral reef sponges on rock and rubble substrates. J Exp Mar Biol Ecol 402:49–55

    Google Scholar 

  • Duffy JE (1992) Host use patterns and demography in a guild of tropical sponge-dwelling shrimps. Mar Ecol Prog Ser 90:127–138

    Google Scholar 

  • Duffy JE (1996a) Eusociality in a coral-reef shrimp. Nature 381:512–514

    CAS  Google Scholar 

  • Duffy JE (1996b) Species boundaries, specialization, and the radiation of sponge-dwelling alpheid shrimp. Biol J Linn Soc 58:307–324

    Google Scholar 

  • Duffy JE, Hay ME (2000) Strong impacts of grazing amphipods on the organization of a benthic community. Ecol Monogr 70:237–263

    Google Scholar 

  • Duffy JE, Morrison CL, Rios R (2000) Multiple origins of eusociality among sponge-dwelling shrimps (Synalpheus). Evolution 54:503–516

    CAS  PubMed  Google Scholar 

  • Dutertre S, Lewis R (2013) Cone snail biology, bioprospecting and conservation. In: Hämäläinen EM, Järvinen S (eds) Snails: biology, ecology and conservation. Nova Science Publishers, pp

  • Dzeroski S, Drumm D (2003) Using regression trees to identify the habitat preference of the sea cucumber (Holothuria leucospilota) on Rarotonga, Cook Islands. Ecol Model 170:219–226

    Google Scholar 

  • Eakin CM, Sweatman HPA, Brainard RE (2019) The 2014–2017 global-scale coral bleaching event: insights and impacts. Coral Reefs 38:539–545

    Google Scholar 

  • Edgar GJ (1991) Artificial algae as habitats for mobile epifauna: factors affecting colonization in a Japanese Sargassum bed. Hydrobiologia 226:111–118

    Google Scholar 

  • Eggertsen M, Tano SA, Chacin DH, Eklöf JS, Larsson J, Berkström C, Buriyo AS, Halling C (2020) Different environmental variables predict distribution and cover of the introduced red seaweed Eucheuma denticulatum in two geographical locations. Biol Invasions 23(4):1049–1067

    Google Scholar 

  • Eggleston DB (1995) Recruitment in Nassau grouper Epinephelus striatus - postsettlement abundance, microhabitat features, and ontogenic habitat shifts. Mar Ecol Prog Ser 124:9–22

    Google Scholar 

  • Eggleston DB, Lipcius RN, Miller DL, Coba-Cetina L (1990) Shelter scaling regulates survival of juvenile Caribbean spiny lobster Panulirus argus. Mar Ecol Prog Ser 62:79–88

    Google Scholar 

  • Enochs IC (2012) Motile cryptofauna associated with live and dead coral substrates: implications for coral mortality and framework erosion. Mar Biol 159:709–722

    Google Scholar 

  • Enochs IC, Manzello DP (2012a) Responses of cryptofaunal species richness and trophic potential to coral reef habitat degradation. Diversity 4:94–104

    Google Scholar 

  • Enochs IC, Manzello DP (2012b) Species richness of motile cryptofauna across a gradient of reef framework erosion. Coral Reefs 31:653–661

    Google Scholar 

  • Enochs IC, Toth LT, Brandtneris VW, Afflerbach JC, Manzello DP (2011) Environmental determinants of motile cryptofauna on an eastern Pacific coral reef. Mar Ecol Prog Ser 438:105–118

    Google Scholar 

  • Enochs I, Hockensmith G. (2008) Effects of coral mortality on the community composition of cryptic metazoans associated with Pocillopora damicornis. In: Proceedings of the 11th international coral reef symposium, (pp 1368–1372)

  • Evans RD, Wilson SK, Field SN, Moore JAY (2014) Importance of macroalgal fields as coral reef fish nursery habitat in north-west Australia. Mar Biol 161:599–607

    Google Scholar 

  • Eyre BD, Cyronak T, Drupp P, De Carlo EH, Sachs JP, Andersson AJ (2018) Coral reefs will transition to net dissolving before end of century. Science 359:908–911

    CAS  PubMed  Google Scholar 

  • Fava F, Ponti M, Scinto A, Calcinai B, Cerrano C (2009) Possible effects of human impacts on epibenthic communities and coral rubble features in the marine Park of Bunaken (Indonesia). Estuar Coast Shelf S 85:151–156

    Google Scholar 

  • Feary DA (2007) The influence of resource specialization on the response of reef fish to coral disturbance. Mar Biol 153:153–161

    Google Scholar 

  • Fenner DP (1991) Effects of Hurricane Gilbert on coral reefs, fishes and sponges at Cozumel, Mexico. B Mar Sci 48:719–730

    Google Scholar 

  • Ferrier-Pages C, Furla P (2001) Pico- and nanoplankton biomass and production in the two largest atoll lagoons of French Polynesia. Mar Ecol Prog Ser 211:63–76

    CAS  Google Scholar 

  • Ferrier-Pages C, Gattuso JP (1998) Biomass, production and grazing rates of pico- and nanoplankton in coral reef waters (Miyako Island, Japan). Microb Ecol 35:46–57

    CAS  PubMed  Google Scholar 

  • Figueira WF, Lyman SJ, Crowder LB, Rilov G (2008) Small-scale demographic variability of the biocolor damselfish, Stegastes partitus, in the Florida Keys USA. Environ Biol Fish 81:297–311

    Google Scholar 

  • Finn MD, Kingsford MJ (1996) Two-phase recruitment of apogonids (Pisces) on the great barrier reef. Mar Freshwater Res 47:423–432

    Google Scholar 

  • Fiore CL, Jutte PC (2010) Characterization of macrofaunal assemblages associated with sponges and tunicates collected off the southeastern United States. Invertebr Biol 129:105–120

    Google Scholar 

  • Fishelson L (2006) Cytomorphological alterations of the thymus, spleen, head-kidney, and liver in cardinal fish (Apogonidae, Teleostei) as bioindicators of stress. J Morphol 267:57–69

    CAS  PubMed  Google Scholar 

  • Fletcher NK (2009) Freshwater runoff effects on the diversity and colonization of coral rubble-inhabiting crustacean microcommunities. University of California

    Google Scholar 

  • Fong P, Lirman D (1995) Hurricanes cause population expansion of the branching coral Acropora palmata (Scleractinia): wound healing and growth patterns of asexual recruits. Mar Ecol 16(4):317–335

    Google Scholar 

  • Fong P, Smith TB, Muthukrishnan R (2017) Algal dynamics: alternate stable states of reefs in the eastern tropical Pacific. Coral Reefs World 8:339–367

    Google Scholar 

  • Fong P, Paul VJ (2011) Coral reef algae. Coral reefs: an ecosystem in transition, 241–272

  • Forsythe JW, Hanlon RT (1997) Foraging and associated behavior by Octopus cyanea Gray, 1849 on a coral atoll, French Polynesia. J Exp Mar Biol Ecol 209:15–31

    Google Scholar 

  • Fox HE, Pet JS, Dahuri R, Caldwell RL (2003) Recovery in rubble fields: long-term impacts of blast fishing. Mar Pollut Bull 46:1024–1031

    CAS  PubMed  Google Scholar 

  • Fox HE, Harris JL, Darling ES, Ahmadia GN, Estradivari RTB (2019) Rebuilding coral reefs: success (and failure) 16 years after low-cost, low-tech restoration. Restor Ecol 27:862–869

    Google Scholar 

  • Fraser K, Stuart-Smith R, Ling S, Heather F, Edgar G (2020) Taxonomic composition of mobile epifaunal invertebrate assemblages on diverse benthic microhabitats from temperate to tropical reefs. Mar Ecol Prog Ser 640:31–43

    Google Scholar 

  • Frederich B, Michel LN, Zaeytydt E, Bolaya RL, Lavitra T, Parmentier E, Lepoint G (2017) Comparative feeding ecology of cardinalfishes (Apogonidae) at Toliara Reef, Madagascar. Zool Stud 56

  • Frouin P (2000) Effects of anthropogenic disturbances of tropical soft-bottom benthic communities. Mar Ecol Prog Ser 194:39–53

    Google Scholar 

  • Fulton CJ, Bellwood DR (2002) Patterns of foraging in labrid fishes. Mar Ecol Prog Ser 226:135–142

    Google Scholar 

  • Galland GR, Erisman B, Aburto-Oropeza O, Hastings PA (2017) Contribution of cryptobenthic fishes to estimating community dynamics of sub-tropical reefs. Mar Ecol Prog Ser 584:175–184

    Google Scholar 

  • Gardiner NM, Munday PL, Nilsson GE (2010) Counter-gradient variation in respiratory performance of coral reef fishes at elevated temperatures. PLoS ONE 5(10):e13299

    PubMed  PubMed Central  Google Scholar 

  • Garpe KC, Ohman MC (2007) Non-random habitat use by coral reef fish recruits in Mafia Island Marine Park, Tanzania. Afr J Mar Sci 29:187–199

    Google Scholar 

  • Garpe KC, Yahya SAS, Lindahl U, Ohman MC (2006) Long-term effects of the 1998 coral bleaching event on reef fish assemblages. Mar Ecol Prog Ser 315:237–247

    Google Scholar 

  • Garrett P, Smith DL, Wilson AO, Patriquin D (1971) Physiography, ecology, and sediments of two Bermuda patch reefs. J Geol 79:647–668

    Google Scholar 

  • Gischler E (1997) Cavity dwellers (coelobites) beneath coral rubble in the florida reef tract. B Mar Sci 61:467–484

    Google Scholar 

  • Gischler E, Ginsburg RN (1996) Cavity dwellers (coelobites) under coral rubble in southern Belize barrier and atoll reefs. B Mar Sci 58:570–589

    Google Scholar 

  • Gittings SR, Bright TJ, Hagman DK (1996) The MV Wellwood and other large vessel groundings: coral reef damage and recovery. Biol Conserv 2:218

    Google Scholar 

  • Glynn PW (1980) Defense by symbiotic Crustacea of host corals elicited by chemical cues from predator. Oecologia 47:287–290

    PubMed  Google Scholar 

  • Glynn PW (1983) Increased survivorship in corals harboring crustacean symbionts. Mar Biol Lett 4:105–111

    Google Scholar 

  • Glynn PW (1991) Coral reef bleaching in the 1980s and possible connections with global warming. Trends Ecol Evol 6:175–179

    CAS  PubMed  Google Scholar 

  • Glynn PW (2011) In tandem reef coral and cryptic metazoan declines and extinctions. B Mar Sci 87:767–794

    Google Scholar 

  • Glynn PW, Manzello DP (2015) Bioerosion and coral reef growth: A dynamic balance. In: Birkeland C (ed) Coral Reefs in the Anthropocene. Springer, pp 67–97

    Google Scholar 

  • Glynn PW, Enochs IC (2011) Invertebrates and their roles in coral reef ecosystems. Coral Reefs: An Ecosystem in Transition, 273–325

  • Glynn P. (1974) Rolling stones among the Scleractinia: Mobile coralliths in the Gulf of Panama. In: Proceedings of the 2nd international coral reef symposium, Brisbane, Australia, (pp 183–198)

  • Glynn P. (2006) Fish utilization of simulated coral reef frameworks versus eroded rubble substrates off Panama, eastern Pacific. In: Proceedings of the 10th international coral reef symposium, (pp 250–256)

  • Glynn PW (2013) Fine-scale interspecific interactions on coral reefs: functional roles of small and cryptic metazoans. Res Discov: Revolut Sci Scuba. Smithsonian Contrib Marine Sci, pp 229–248

  • Goatley CHR, Gonzalez-Cabello A, Bellwood DR (2016) Reef-scale partitioning of cryptobenthic fish assemblages across the Great Barrier Reef, Australia. Mar Ecol Prog Ser 544:271–280

    Google Scholar 

  • Goatley CHR, Gonzalez-Cabello A, Bellwood DR (2017) Small cryptopredators contribute to high predation rates on coral reefs. Coral Reefs 36:207–212

    Google Scholar 

  • Gobin JF, Warwick RM (2006) Geographical variation in species diversity: a comparison of marine polychaetes and nematodes. J Exp Mar Biol Ecol 330:234–244

    Google Scholar 

  • Gomez CE, Ardila NE, Sanjuan-Munoz A (2013) Sipunculans associated with dead coral skeletons in the Santa Marta region of Colombia, south-western Caribbean. J Mar Biol Assoc Uk 93:1785–1793

    Google Scholar 

  • Gonzalez-Gomez R, Briones-Fourzan P, Alvarez-Filip L, Lozano-Alvarez E (2018) Diversity and abundance of conspicuous macrocrustaceans on coral reefs differing in level of degradation. PeerJ 6:e4922

    PubMed  PubMed Central  Google Scholar 

  • Goodbody I (2000) Diversity and distribution of ascidians (Tunicata) in the Pelican Cays Belize. Atoll Res Bull. https://doi.org/10.5479/si.00775630.480

    Article  Google Scholar 

  • Gordon DP (1989) Intertidal bryozoans from coral reef-flat rubble Saaga, Western Samoa. New Zeal J Zool 16:447–463

    Google Scholar 

  • Gourlay M. (1988) Coral cays: Products of wave action and geological processes in a biogenic environment. In: Proceedings of the 6th international coral reef symposium. Great Barrier Reef Committee Townsville, (pp 491–496)

  • Graham NAJ, Nash KL (2013) The importance of structural complexity in coral reef ecosystems. Coral Reefs 32:315–326

    Google Scholar 

  • Graham NAJ, Wilson SK, Jennings S, Polunin NVC, Robinson J, Bijoux JP, Daw TM (2007) Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conserv Biol 21:1291–1300

    PubMed  Google Scholar 

  • Granados-Barba A, Solis-Weiss V, Tovar-Hernandez MA, Ochoa-Rivera V (2003) Distribution and diversity of the Syllidae (Annelida : Polychaeta) from the Mexican Gulf of Mexico and Caribbean. Hydrobiologia 496:337–345

    Google Scholar 

  • Gregg AK, Hatay M, Haas AF, Robinett NL, Barott K, Vermeij MJA, Marhaver KL, Meirelles P, Thompson F, Rohwer F (2013) Biological oxygen demand optode analysis of coral reef-associated microbial communities exposed to algal exudates. PeerJ 1:e107

    PubMed  PubMed Central  Google Scholar 

  • Grol MGG, Nagelkerken I, Bosch N, Meesters EH (2011) Preference of early juveniles of a coral reef fish for distinct lagoonal microhabitats is not related to common measures of structural complexity. Mar Ecol Prog Ser 432:221–233

    Google Scholar 

  • Grol MGG, Rypel AL, Nagelkerken I (2014) Growth potential and predation risk drive ontogenetic shifts among nursery habitats in a coral reef fish. Mar Ecol Prog Ser 502:229–244

    Google Scholar 

  • Guillemot N, Chabanet P, Le Pape O (2010) Cyclone effects on coral reef habitats in New Caledonia (South Pacific). Coral Reefs 29:445–453

    Google Scholar 

  • Gutierrez-Heredia L, Keogh C, Keaveney S, Reynaud EG (2016) 3D printing solutions for coral studies, education and monitoring. Reef Encounter 31:39–44

    Google Scholar 

  • Guzman HM (1988) Distribution and abundance of corallivorous organisms in the coral reefs of Isla Del Cano, Costa Rica. Rev Biol Trop 36:191–207

    Google Scholar 

  • Hanlon RT, Forsythe JW, Joneschild DE (1999) Crypsis, conspicuousness, mimicry and polyphenism as antipredator defences of foraging octopuses on Indo-Pacific coral reefs, with a method of quantifying crypsis from video tapes. Biol J Linn Soc 66:1–22

    Google Scholar 

  • Harborne AR, Mumby PJ, Ferrari R (2012) The effectiveness of different meso-scale rugosity metrics for predicting intra-habitat variation in coral-reef fish assemblages. Environ Biol Fish 94:431–442

    Google Scholar 

  • Harmelin-Vivien M (1973) Contribution à l’étude de l’éthologie alimentaire de l’ichtyofaune du platier interne des récifs coralliens de Tuléar (Madagascar). Tethys 5:221–308

    Google Scholar 

  • Harmelin-Vivien M (1981) Trophic relationships of reef fishes in Tulear (Madagascar). Oceanol Acta 4:365–374

    Google Scholar 

  • Harmelin-Vivien ML, Laboute P (1986) Catastrophic impact of hurricanes on atoll outer reef slopes in the Tuamotu (French Polynesia). Coral Reefs 5:55–62

    Google Scholar 

  • Harrington L, Fabricius K, De’Ath G, Negri A (2004) Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85:3428–3437

    Google Scholar 

  • Harris DL, Vila-Concejo A (2013) Wave transformation on a coral reef rubble platform. J Coastal Res 65(10065):506–510

    Google Scholar 

  • Hartman WD (1977) Sponges as reef builders and shapers: reef biota. reefs related carbonate-ecol sedimentol. AAPG, pp 127–134

  • Hatcher BG (1988) Coral reef primary productivity - a beggars banquet. Trends Ecol Evol 3:106–111

    CAS  PubMed  Google Scholar 

  • Hatcher BG (1990) Coral-reef primary productivity - a hierarchy of pattern and process. Trends Ecol Evol 5:149–155

    CAS  PubMed  Google Scholar 

  • Hawkins JP, Roberts CM (1993) Effects of recreational scuba diving on coral reefs - trampling on reef-flat communities. J Appl Ecol 30:25–30

    Google Scholar 

  • Hayward P (1988) Mauritian cheilostome Bryozoa. J Zool 215:269–356

    Google Scholar 

  • Head CEI, Bonsall MB, Jenkins TL, Koldewey H, Pratchett MS, Taylor ML, Rogers AD (2018) Exceptional biodiversity of the cryptofaunal decapods in the Chagos Archipelago, central Indian Ocean. Mar Pollut Bull 135:636–647

    CAS  PubMed  Google Scholar 

  • Hempson TN, Graham NAJ, MacNeil MA, Hoey AS, Wilson SK (2018) Ecosystem regime shifts disrupt trophic structure. Ecol Appl 28:191–200

    PubMed  Google Scholar 

  • Hendler G, Littman BS (1986) The ploys of sex - relationships among the mode of reproduction, body size and habitats of coral reef brittlestars. Coral Reefs 5:31–42

    Google Scholar 

  • Henkel TP, Pawlik JR (2005) Habitat use by sponge-dwelling brittlestars. Mar Biol 146:301–313

    Google Scholar 

  • Hepburn LJ, Perry C, Blanchon P. 2005. Distribution of macroborers in reef rubble, Puerto Morelos, Mexican Caribbean. In: Proceedings of the 10th international coral reef symposium, Okinawa, Japan, (pp 327–334)

  • Hermosillo-Nunez BB, Rodriguez-Zaragoza FA, Ortiz M, Calderon-Aguilera LE, Cupul-Magana AL (2016) Influence of the coral reef assemblages on the spatial distribution of echinoderms in a gradient of human impacts along the tropical Mexican Pacific. Biodivers Conserv 25:2137–2152

    Google Scholar 

  • Hernaman V, Probert PK (2008) Spatial and temporal patterns of abundance of coral reef gobies (Teleostei : Gobiidae). J Fish Biol 72:1589–1606

    Google Scholar 

  • Hernaman V, Probert PK, Robbins WD (2009) Trophic ecology of coral reef gobies: interspecific, ontogenetic, and seasonal comparison of diet and feeding intensity. Mar Biol 156:317–330

    Google Scholar 

  • Hernandez-Alcantara P, Cruz-Perez IN, Solis-Weiss V (2019) Composition and diversity patterns of Eunicida and Amphinomida (Annelida) associated to dead coral in the Chinchorro bank biosphere reserve, Caribbean Sea. J Mar Biol Assoc Uk 99:1547–1555

    CAS  Google Scholar 

  • Heyward AJ, Collins JD (1985) Fragmentation in Montipora ramosa - the genet and ramet concept applied to a reef coral. Coral Reefs 4:35–40

    Google Scholar 

  • Heyward AJ, Negri AP (1999) Natural inducers for coral larval metamorphosis. Coral Reefs 18:273–279

    Google Scholar 

  • Hiatt RW, Strasburg DW (1960) Ecological relationships of the fish fauna on coral reefs of the Marshall Islands. Ecol Monogr 30:66–127

    Google Scholar 

  • Highsmith RC (1982) Reproduction by Fragmentation in Corals. Mar Ecol Prog Ser 7:207–226

    Google Scholar 

  • Highsmith RC, Riggs AC, Dantonio CM (1980) Survival of hurricane-generated coral fragments and a disturbance model of reef calcification-growth rates. Oecologia 46:322–329

    PubMed  Google Scholar 

  • Hill J, Wilkinson C (2004) Methods for ecological monitoring of coral reefs: a resource for managers. Aust Insti Marine Sci (AIMS) 1:123

    Google Scholar 

  • Hixon MA, Beets JP (1993) Predation, prey refuges, and the structure of coral reef fish assemblages. Ecol Monogr 63:77–101

    Google Scholar 

  • Hixon MA, Jones GP (2005) Competition, predation, and density-dependent mortality in demersal marine fishes. Ecology 86:2847–2859

    Google Scholar 

  • Hobson ES (1974) Feeding relationships of teleostean fishes on coral reefs in Kona. Hawaii Fish B-Noaa 72:915–1031

    Google Scholar 

  • Hochberg FG, Norman MD, Finn J (2006) Wunderpus photogenicus n. gen. and sp., a new octopus from the shallow waters of the Indo-Malayan Archipelago (Cephalopoda : Octopodidae). Molluscan Res 26:128–140

    Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshwater Res 50:839–866

    Google Scholar 

  • Hoeksema BW (2017) The hidden biodiversity of tropical coral reefs. Biodiversity 18:8–12

    Google Scholar 

  • Hohenegger J, Yordanova E, Nakano Y, Tatzreiter F (1999) Habitats of larger foraminifera on the upper reef slope of Sesoko Island, Okinawa, Japan. Mar Micropaleontol 36:109–168

    Google Scholar 

  • Holbrook SJ, Schmitt RJ, Brooks AJ (2008) Resistance and resilience of a coral reef fish community to changes in coral cover. Mar Ecol Prog Ser 371:263–271

    Google Scholar 

  • Holmes KE (2000) Effects of eutrophication on bioeroding sponge communities with the description of new West Indian sponges, Cliona spp. (Porifera : Hadromeridaa : Clionidae). Invertebr Biol 119:125–138

    Google Scholar 

  • Holmes NJ, Harriott VJ, Banks SA (1997) Latitudinal variation in patterns of colonisation of cryptic calcareous marine organisms. Mar Ecol Prog Ser 155:103–113

    Google Scholar 

  • Holmes KE, Edinger EN, Hariyadi LGV, Risk MJ (2000) Bioerosion of live massive corals and branching coral rubble on Indonesian coral reefs. Mar Pollut Bull 40:606–617

    CAS  Google Scholar 

  • Holmes K. (1997). Eutrophication and its effect on bioeroding sponge communities. In: Proc 8th Int Coral Reef Symp, (pp 1411–1416)

  • Holzwarth M, Trendel J-M, Albrecht P, Maier A, Michaelis W (2005) Cyclic peroxides derived from the marine sponge Plakortis simplex. J Nat Prod 68:759–761

    CAS  PubMed  Google Scholar 

  • Hopley D (2011) Lagoons. In: Hopley D (ed) Encyclopedia of Modern Coral Reefs: structure, form and process. Encyclopedia of Earth Science Springer, pp 338–348

    Google Scholar 

  • Hughes TP (1994) Catastrophes, phase-shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551

    CAS  PubMed  Google Scholar 

  • Hughes TP (1999) Off-reef transport of coral fragments at Lizard Island, Australia. Mar Geol 157:1–6

    Google Scholar 

  • Hughes TP, Connell JH (1999) Multiple stressors on coral reefs: a long-term perspective. Limnol Oceanogr 44:932–940

    Google Scholar 

  • Hughes TP, Reed DC, Boyle MJ (1987) Herbivory on coral reefs - community structure following mass mortalities of sea urchins. J Exp Mar Biol Ecol 113:39–59

    Google Scholar 

  • Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC, Kleypas J, van de Leemput IA, Lough JM, Morrison TH, Palumbi SR, van Nes EH, Scheffer M (2017) Coral reefs in the Anthropocene. Nature 546:82–90

    CAS  PubMed  Google Scholar 

  • Hughes TP, Kerry JT, Baird AH, Connolly SR, Dietzel A, Eakin CM, Heron SF, Hoey AS, Hoogenboom MO, Liu G, McWilliam MJ, Pears RJ, Pratchett MS, Skirving WJ, Stella JS, Torda G (2018) Global warming transforms coral reef assemblages. Nature 556:492–496

    CAS  PubMed  Google Scholar 

  • Huijbers CM, Nagelkerken I, Govers LL, van de Kerk M, Oldenburger JJ, de Brouwer JHF (2011) Habitat type and schooling interactively determine refuge-seeking behavior in a coral reef fish throughout ontogeny. Mar Ecol Prog Ser 437:241–251

    Google Scholar 

  • Hultgren KM, Duffy JE (2012) Phylogenetic community ecology and the role of social dominance in sponge-dwelling shrimp. Ecol Lett 15:704–713

    PubMed  Google Scholar 

  • Hultgren KM, Macdonald KS, Duffy JE (2010) Sponge-dwelling snapping shrimps of Curacao, with descriptions of three new species. Zootaxa 2372(1):221–262

    Google Scholar 

  • Hundt PJ, Nakamura Y, Yamaoka K (2014) Diet of combtooth blennies (Blenniidae) in Kochi and Okinawa, Japan. Ichthyol Res 61:76–82

    Google Scholar 

  • Hurley KKC, Timmers MA, Godwin LS, Copus JM, Skillings DJ, Toonen RJ (2016) An assessment of shallow and mesophotic reef brachyuran crab assemblages on the south shore of O’ahu, Hawai’i. Coral Reefs 35:103–112

    Google Scholar 

  • Hutchings PA (1986) Biological destruction of coral reefs - a review. Coral Reefs 4:239–252

    Google Scholar 

  • Hutchings PA, Kiene WE (1986) Bioerosion of coral reefs. Oceanus 29:71–71

    Google Scholar 

  • Hutchings PA, Kupriyanova E (2015) Polychaetes and allies of Lizard Island. Zootaxa 4019:2

    Google Scholar 

  • Hutchings PA, Peyrot-Clausade M (2002) The distribution and abundance of boring species of polychaetes and sipunculans in coral substrates in French Polynesia. J Exp Mar Biol Ecol 269:101–121

    Google Scholar 

  • Hutchings PA, Kiene WE, Cunningham RB, Donnelly C (1992) Spatial and temporal patterns of non-colonial boring organisms (polychaetes, sipunculans and bivalve mollusks) in Porites at Lizard Island, great barrier reef. Coral Reefs 11:23–31

    Google Scholar 

  • Hutchings P, Nogueira JMD, Carrerette O (2015) Telothelepodidae, thelepodidae and trichobranchidae (Annelida, Terebelliformia) from Lizard Island, Great Barrier Reef, Australia. Zootaxa 4019:240–274

    PubMed  Google Scholar 

  • Hutchings PA (1983) Cryptofaunal communities of coral reefs. In: D.J. B (eds) Perspectives in coral reefs, Australian Institute of Marine Science, Townsville, (pp 200–208)

  • Hutchings PA (2008) Role of polychaetes in bioerosion of coral substrates. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Erlangen Earth Conference Series, Springer, Berlin, Heidelberg, (pp 249–264)

  • IPCC (2018) Global warming of 1.5° C: an IPCC special report on the impacts of global warming of 1.5° C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Intergovernmental Panel on Climate Change.

  • Jackson J (1977) Competition on marine hard substrata: the adaptive significance of solitary and colonial strategies. Am Nat 111:743–767

    Google Scholar 

  • Jackson JBC, Buss L (1975) Allelopathy and spatial competition among coral reef invertebrates. P Natl Acad Sci USA 72:5160–5163

    CAS  Google Scholar 

  • Jackson JBC, Winston JE (1982) Ecology of cryptic coral-reef communities.1. distribution and abundance of major groups of encrusting organisms. J Exp Mar Biol Ecol 57:135–147

    Google Scholar 

  • Jameson SC, Ammar MSA, Saadalla E, Mostafa HM, Riegl B (1999) A coral damage index and its application to diving sites in the Egyptian Red Sea. Coral Reefs 18:333–339

    Google Scholar 

  • Jaubert JM, Vasseur P. (1974) Light measurements: duration aspect and the distribution of benthic organisms in an Indian Ocean coral reef (Tulear, Madagascar). In: Proc 2nd int coral reef symp, (pp 127–142)

  • Jell JS, Webb GE (2012) Geology of Heron Island and adjacent reefs, great barrier reef, Australia. Episodes 35:110–119

    Google Scholar 

  • Jewell J, Cherp A (2020) On the political feasibility of climate change mitigation pathways: Is it too late to keep warming below 15°C? Wires Clim Change 11:e621

    Google Scholar 

  • Johns KA, Emslie MJ, Hoey AS, Osborne K, Jonker MJ, Cheal AJ (2018) Macroalgal feedbacks and substrate properties maintain a coral reef regime shift. Ecosphere 9:e02349

    Google Scholar 

  • Johnson JW (2012) Pseudopataecus carnatobarbatus, a new species of velvetfish (Teleostei: Scorpaeniformes: Aploactinidae) from the Kimberley coast of Western Australia. Zootaxa 3245(1):54–62

    Google Scholar 

  • Johnson CR, Sutton DC, Olson RR, Giddins R (1991) Settlement of crown-of-thorns starfish – role of bacteria on surfaces of coralline algae and a hypothesis for deep-water recruitment. Mar Ecol Prog Ser 71:143–162

    Google Scholar 

  • Jokiel PL (1980) Solar ultraviolet-radiation and coral reef epifauna. Science 207:1069–1071

    CAS  PubMed  Google Scholar 

  • Jones GP, Syms C (1998) Disturbance, habitat structure and the ecology of fishes on coral reefs. Aust J Ecol 23:287–297

    Google Scholar 

  • Jones AM, Brown C, Gardner S (2011) Tool use in the tuskfish Choerodon schoenleinii? Coral Reefs 30:865–865

    Google Scholar 

  • Kay EA (1971) The littoral marine molluscs of Fanning Island. Pac Sci 28:247–255

    Google Scholar 

  • Kay EA, Switzer MF (1974) Molluscan distribution patterns in Fanning Island Lagoon and a comparison of the mollusks of the lagoon and the seaward reefs. Pac Sci 28:275–295

    Google Scholar 

  • Kayal M, Vercelloni J, Wand MP, Adjeroud M (2015) Searching for the best bet in life-strategy: a quantitative approach to individual performance and population dynamics in reef-building corals. Ecol Complex 23:73–84

    Google Scholar 

  • Keesing JK, Halford AR (1992) Importance of postsettlement processes for the population dynamics of Acanthaster planci (L). Aust J Mar Fresh Res 43:635–651

    Google Scholar 

  • Kennedy EV, Perry CT, Halloran PR, Iglesias-Prieto R, Schonberg CHL, Wisshak M, Form AU, Carricart-Ganivet JP, Fine M, Eakin CM, Mumby PJ (2013) Avoiding coral reef functional collapse requires local and global action. Curr Biol 23:912–918

    CAS  PubMed  Google Scholar 

  • Kensley B (1984) The role of isopod crustaceans in the reef crest community at Carrie Bow Cay, Belize. Mar Ecol 5:29–44

    Google Scholar 

  • Kenyon T (2021) From rubble to reef: The physical and biological dynamics of coral reef rubble beds. University of Queensland

    Google Scholar 

  • Kenyon TM, Doropoulos C, Dove S, Webb GE, Newman SP, Sim CW, Arzan M, Mumby PJ (2020) The effects of rubble mobilisation on coral fragment survival, partial mortality and growth. J Exp Mar Biol Ecol 533:151467

    Google Scholar 

  • Kiene W, Hutchings P (1994) Bioerosion experiments at Lizard Island, great barrier reef. Coral Reefs 13:91–98

    Google Scholar 

  • Kitamura M, Koyama T, Nakano Y, Uemura D (2007) Characterization of a natural inducer of coral larval metamorphosis. J Exp Mar Biol Ecol 340:96–102

    Google Scholar 

  • Kleemann K (1996) Biocorrosion by bivalves. Mar Ecol 17:145–158

    CAS  Google Scholar 

  • Kline DI, Teneva L, Okamoto DK, Schneider K, Caldeira K, Miard T, Chai A, Marker M, Dunbar RB, Mitchell BG, Dove S, Hoegh-Guldberg O (2019) Living coral tissue slows skeletal dissolution related to ocean acidification. Nat Ecol Evol 3:1438–1444

    PubMed  Google Scholar 

  • Klumpp DW, Pulfrich A (1989) Trophic significance of herbivorous macroinvertebrates on the central great barrier reef. Coral Reefs 8:135–144

    Google Scholar 

  • Klumpp DW, McKinnon AD, Mundy CN (1988) Motile cryptofauna of a coral reef - abundance, distribution and trophic potential. Mar Ecol Prog Ser 45:95–108

    Google Scholar 

  • Knowlton N, Brainard RE, Fisher R, Moews M, Plaisance L, Caley MJ (2010) Coral reef biodiversity. Life in the world’s oceans: diversity distribution and abundance, 65–74

  • Knutson TR, McBride JL, Chan J, Emanuel K, Holland G, Landsea C, Held I, Kossin JP, Srivastava A, Sugi M (2010) Tropical cyclones and climate change. Nat Geosci 3:157–163

    CAS  Google Scholar 

  • Knutson TR, Sirutis JJ, Zhao M, Tuleya RE, Bender M, Vecchi GA, Villarini G, Chavas D (2015) Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4. 5 scenarios. J Climate 28:7203–7224

    Google Scholar 

  • Knutson T, Camargo SJ, Chan JC, Emanuel K, Ho C-H, Kossin J, Mohapatra M, Satoh M, Sugi M, Walsh K (2020) Tropical cyclones and climate change assessment: part II: projected response to anthropogenic warming. B Am Meteorol Soc 101:E303–E322

    Google Scholar 

  • Kobluk DR, Lysenko MA (1986) Reef-dwelling molluscs in open framework cavities, Bonaire NA, and their potential for preservation in a fossil reef. B Mar Sci 39:657–672

    Google Scholar 

  • Kobluk DR, Lysenko MA (1987) Impact of 2 sequential Pacific hurricanes on sub-rubble cryptic corals - the possible role of cryptic organisms in maintenance of coral reef communities. J Paleontol 61:663–675

    Google Scholar 

  • Kobluk DR, Lysenko MA (1993) Hurricane effects on shallow-water cryptic reef mollusks, Fiji Islands. J Paleontol 67:798–816

    Google Scholar 

  • Kobluk DR, Cuffey RJ, Fonda SS, Lysenko MA (1988) Cryptic Bryozoa, leeward fringing reef of Bonaire, Netherlands Antilles, and their paleoecological application. J Paleontol 62:427–439

    Google Scholar 

  • Kobuk DR, Van Soest R (1989) Cavity-dwelling sponges in a southern Caribbean coral reef and their paleontological implications. B Mar Sci 44:1207–1235

    Google Scholar 

  • Koh EGL (1997) Do scleractinian corals engage in chemical warfare against microbes? J Chem Ecol 23:379–398

    CAS  Google Scholar 

  • Kohn AJ (1959) The ecology of Conus in Hawaii. Ecol Monogr 29:47–90

    Google Scholar 

  • Kohn AJ (1983) Microhabitat factors affecting abundance and diversity of Conus on coral reefs. Oecologia 60:293–301

    PubMed  Google Scholar 

  • Kohn AJ (2015) Ecology of Conus on Seychelles reefs at mid-twentieth century: comparative habitat use and trophic roles of co-occurring congeners. Mar Biol 162:2391–2407

    Google Scholar 

  • Kramer MJ, Bellwood DR, Bellwood O (2012) Cryptofauna of the epilithic algal matrix on an inshore coral reef, Great Barrier Reef. Coral Reefs 31:1007–1015

    Google Scholar 

  • Kramer MJ, Bellwood O, Bellwood DR (2013) The trophic importance of algal turfs for coral reef fishes: the crustacean link. Coral Reefs 32:575–583

    Google Scholar 

  • Kramer MJ, Bellwood DR, Bellwood O (2014a) Benthic Crustacea on coral reefs: a quantitative survey. Mar Ecol Prog Ser 511:105–116

    Google Scholar 

  • Kramer MJ, Bellwood DR, Bellwood O (2014b) Large-scale spatial variation in epilithic algal matrix cryptofaunal assemblages on the great barrier reef. Mar Biol 161:2183–2190

    Google Scholar 

  • Kramer MJ, Bellwood O, Fulton CJ, Bellwood DR (2015) Refining the invertivore: diversity and specialisation in fish predation on coral reef crustaceans. Mar Biol 162:1779–1786

    CAS  Google Scholar 

  • Kramer MJ, Bellwood O, Bellwood DR (2016) Foraging and microhabitat use by crustacean-feeding wrasses on coral reefs. Mar Ecol Prog Ser 548:277–282

    Google Scholar 

  • Krishnan P, Grinson-George VN, Titus-Immanuel G-B, Anand A, Kumar KV, Kumar SS (2013) Tropical storm off Myanmar coast sweeps reefs in Ritchie’s Archipelago, Andaman. Environ Monit Assess 185:5327–5338

    CAS  PubMed  Google Scholar 

  • La Mesa G, Micalizzi M, Giaccone G, Vacchi M (2004) Cryptobenthic fishes of the “Ciclopi Islands” marine reserve (central Mediterranean Sea): assemblage composition, structure and relations with habitat features. Mar Biol 145:233–242

    Google Scholar 

  • Larkum AWD, Kennedy IR, Muller WJ (1988) Nitrogen fixation on a coral reef. Mar Biol 98:143–155

    Google Scholar 

  • Lasley RM, Klaus S, Ng PKL (2015) Phylogenetic relationships of the ubiquitous coral reef crab subfamily Chlorodiellinae (Decapoda, Brachyura, Xanthidae). Zool Scr 44:165–178

    Google Scholar 

  • Lecchini D, Galzin R (2005) Spatial repartition and ontogenetic shifts in habitat use by coral reef fishes (Moorea, French Polynesia). Mar Biol 147:47–58

    Google Scholar 

  • Lecchini D, Poignonec D (2009) Spatial variability of ontogenetic patterns in habitat associations by coral reef fishes (Moorea lagoon - French Polynesia). Estuar Coast Shelf S 82:553–556

    Google Scholar 

  • Lecchini D, Tsuchiya M (2008) Temporal consistency of ontogenetic shifts in habitat use by coral reef fishes in the northernmost coral ecosystem in the world (Kudaka Island, Japan). J Fish Biol 72:2645–2654

    Google Scholar 

  • Lecchini D, Osenberg CW, Shima JS, Mary CM, Galzin R (2007) Ontogenetic changes in habitat selection during settlement in a coral reef fish: ecological determinants and sensory mechanisms. Coral Reefs 26:423–432

    Google Scholar 

  • Lee CL, Wen CKC, Huang YH, Chung CY, Lin HJ (2019) Ontogenetic habitat usage of juvenile carnivorous fish among seagrass-coral mosaic habitats. Diversity-Basel 11(2):25

    Google Scholar 

  • Lefevre CD, Nash KL, Gonzalez-Cabello A, Bellwood DR (2016) Consequences of extreme life history traits on population persistence: do short-lived gobies face demographic bottlenecks? Coral Reefs 35:399–409

    Google Scholar 

  • Leggat WP, Camp EF, Suggett DJ, Heron SF, Fordyce AJ, Gardner S, Deakin L, Turner M, Beeching LJ, Kuzhiumparambil U, Eakin CM, Ainsworth TD (2019) Rapid coral decay is associated with marine heatwave mortality events on reefs. Curr Biol 29:2723-2730.e2724

    CAS  PubMed  Google Scholar 

  • Leray M, Knowlton N (2015) DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. P Natl Acad Sci USA 112:2076–2081

    CAS  Google Scholar 

  • Leray M, Boehm JT, Mills SC, Meyer CP (2012) Moorea BIOCODE barcode library as a tool for understanding predator-prey interactions: insights into the diet of common predatory coral reef fishes. Coral Reefs 31:383–388

    Google Scholar 

  • Lewis JB, Bray RD (1983) Community Structure of Ophiuroids (Echinodermata) from 3 Different Habitats on a Coral-Reef in Barbados, West-Indies. Mar Biol 73:171–176

    Google Scholar 

  • Ley RE, Harris JK, Wilcox J, Spear JR, Miller SR, Bebout BM, Maresca JA, Bryant DA, Sogin ML, Pace NR (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 72:3685–3695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Light PR, Jones GP (1997) Habitat preference in newly settled coral trout (Plectropomus leopardus, Serranidae). Coral Reefs 16:117–126

    Google Scholar 

  • Lirman D, Biber P (2000) Seasonal dynamics of macroalgal communities of the northern Florida reef tract. Bot Mar 43: 305 314

  • Littler MM, Taylor PR, Littler DS (1989) Complex interactions in the control of coral zonation on a Caribbean reef flat. Oecologia 80:331–340

    CAS  PubMed  Google Scholar 

  • Logan D, Townsend KA, Townsend K, Tibbetts IR (2008) Meiofauna sediment relations in leeward slope turf algae of Heron Island reef. Hydrobiologia 610:269–276

    Google Scholar 

  • López-Victoria M, Zea S, Weil E (2004) New aspects on the biology of the encrusting excavating sponges Cliona aprica, Cliona caribbaea and Cliona sp. Bollettino Dei Musei e Degli Istituti Biologici 68:425–432

    Google Scholar 

  • Lopez-Victoria M, Zea S (2005) Current trends of space occupation by encrusting excavating sponges on Colombian coral reefs. Mar Ecol-Evol Persp 26:33–41

    Google Scholar 

  • Lough JM, Anderson KD, Hughes TP (2018) Increasing thermal stress for tropical coral reefs: 1871–2017. Sci Rep-Uk 8(1):1–8

    CAS  Google Scholar 

  • Lough J (2007) Chapter 2: Climate and climate change on the great barrier reef. In: The great barrier reef marine park authority T (eds) Climate change and the great barrier reef: A vulnerability assessment, (pp 84)

  • Luckhurst BE, Luckhurst K (1978) Analysis of influence of substrate variables on coral reef fish communities. Mar Biol 49:317–323

    Google Scholar 

  • Luehrmann M, Cortesi F, Cheney KL, de Busserolles F, Marshall NJ (2020) Microhabitat partitioning correlates with opsin gene expression in coral reef cardinalfishes (Apogonidae). Funct Ecol 34(5):1041–1052

    Google Scholar 

  • Lyons J, Myers AA (1990) Amphipoda Gammaridea from coral rubble in the Gulf of Aqaba, Red Sea - Families Acanthonotozomatidae, Ampeliscidae, Ampithoidae, Anamixidae, Aoridae and Colomastigidae. J Nat Hist 24:1197–1225

    Google Scholar 

  • Lyons J, Myers AA (1993) Amphipoda Gammaridea from coral rubble in the Gulf of Aqaba, Red Sea - Families Megaluropidae, Melitidae, Phliantidae, Phoxocephalidae and Urothoidae. J Nat Hist 27:575–598

    Google Scholar 

  • Macdonald KS, Rios R, Duffy JE (2006) Biodiversity, host specificity, and dominance by eusocial species among sponge-dwelling alpheid shrimp on the Belize Barrier Reef. Divers Distrib 12:165–178

    Google Scholar 

  • Madin JS (2005) Mechanical limitations of reef corals during hydrodynamic disturbances. Coral Reefs 24:630–635

    Google Scholar 

  • Madin JS, Connolly SR (2006) Ecological consequences of major hydrodynamic disturbances on coral reefs. Nature 444:477–480

    CAS  PubMed  Google Scholar 

  • Madin JS, Hughes TP, Connolly SR (2012) Calcification, storm damage and population resilience of tabular corals under climate change. PLoS ONE 7:e46637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madin JS, Baird AH, Dornelas M, Connolly SR (2014) Mechanical vulnerability explains size-dependent mortality of reef corals. Ecol Lett 17:1008–1015

    PubMed  PubMed Central  Google Scholar 

  • Magalhães WF, Bailey-Brock JH (2019) On two cryptogenic maldanids (Annelida) from coral rubble habitats in Hawaii. Mar Biol Res 15:204–209

    Google Scholar 

  • Manikandan B, Ravindran J (2017) Differential response of coral communities to Caulerpa spp. bloom in the reefs of Indian Ocean. Environ Sci Pollut R 24:3912–3922

    CAS  Google Scholar 

  • Marijnissen S (1999) Bacterial suspension feeding by clionid sponges. University of Groningen

    Google Scholar 

  • Massel SR, Done TJ (1993) Effects of cyclone waves on massive coral assemblages on the Great Barrier Reef - meteorology, hydrodynamics and demography. Coral Reefs 12:153–166

    Google Scholar 

  • Masucci GD (2020) Coastal construction and coral reefs: extension of the artificial coastline, habitat loss, and effects of coastal armouring on the marine ecosystem of Okinawa, Japan.

  • Mateo I, Tobias WJ (2004) Survey of nearshore fish communities on tropical backreef lagoons on the southeastern coast of St. Croix Caribb J Sci 40:327–342

    Google Scholar 

  • Mather JA (1982) Choice and competition: their effects on occupancy of shell homes by Octopus joubini. Mar Freshw Behav Physiol 8:285–293

    Google Scholar 

  • Matsuda S (1989) Succession and growth rates of encrusting crustose coralline algae (Rhodophyta, Cryptonemiales) in the upper forereef environment off Ishigaki Island, Ryukyu Islands. Coral Reefs 7:185–195

    Google Scholar 

  • McClanahan TR (1999) Predation and the control of the sea urchin Echinometra viridis and fleshy algae in the patch reefs of glovers reef, Belize. Ecosystems 2:511–523

    Google Scholar 

  • McFall-Ngai MJ (1994) Animal-bacterial interactions in the early life history of marine invertebrates: the Euprymna scolopes/Vibrio fischeri symbiosis. Am Zool 34:554–561

    Google Scholar 

  • McLeod IM, Williamson DH, Taylor S, Srinivasan M, Read M, Boxer C, Mattocks N, Ceccarelli DM (2019) Bommies away! Logistics and early effects of repositioning 400 tonnes of displaced coral colonies following cyclone impacts on the great barrier reef. Ecol Manag Restor 20:262–265

    Google Scholar 

  • Meehl G, Stocker T, Collins W, Friedlingstein P, Gaye A, Gregory J, Kitoh A, Knutti R, Murphy J, Noda A. (2007) Global climate projections. Climate change 2007: the physical science basis. contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

  • Meesters E, Knijn R, Willemsen P, Pennartz R, Roebers G, Vansoest RWM (1991) Sub-rubble communities of Curacao and Bonaire coral reefs. Coral Reefs 10:189–197

    Google Scholar 

  • Mendoza JCE, Ng PKL (2017) Harryplax severus, a new genus and species of an unusual coral rubble-inhabiting crab from Guam (Crustacea, Brachyura, Christmaplacidae). Zookeys 647:23–35

    Google Scholar 

  • Middelfart P, Kirkendale L, Wilson N (2016) Australian tropical marine micromolluscs: an overwhelming bias. Diversity 8:17

    Google Scholar 

  • Milazzo M, Alessi C, Quattrocchi F, Chemello R, D’Agostaro R, Gil J, Vaccaro AM, Mirto S, Gristina M, Badalamenti F (2019) Biogenic habitat shifts under long-term ocean acidification show nonlinear community responses and unbalanced functions of associated invertebrates. Sci Total Environ 667:41–48

    CAS  PubMed  Google Scholar 

  • Miller PJ (1996) Miniature vertebrates The implications of small body size. In: Zoological society of London symposium Oxford University Press

  • Mohammed JS (2016) Applications of 3D printing technologies in oceanography. Method Oceanogr 17:97–117

    Google Scholar 

  • Monniot C, Monniot F, Laboute P (1991) Coral reef ascidians of New Caledonia. IRD Editions

    Google Scholar 

  • Monroy-Velazquez LV, Rodriguez-Martinez RE, Alvarez F (2017) Taxonomic richness and abundance of cryptic peracarid crustaceans in the puerto morelos reef national park Mexico. PeerJ 5:e3411

    PubMed  PubMed Central  Google Scholar 

  • Monroy-Velázquez V, Alvarez F (2016) New records of isopods (Crustacea: Peracarida: Isopoda) from the Mesoamerican Reef at Puerto Morelos, Quintana Roo. Mexico Check List 12:1938

    Google Scholar 

  • Monroy-Velázquez LV, Rodríguez-Martínez RE, Blanchon P, Alvarez F (2020) The use of artificial substrate units to improve inventories of cryptic crustacean species on Caribbean coral reefs. PeerJ 8:e10389

    PubMed  PubMed Central  Google Scholar 

  • Mora C, Zapata F. (2000) Effects of predatory siteattached fish on abundance and body size of early post-settled reef fishes from Gorgona island, Colombia. In: Proceedings of the 9th international coral reef symposium, (pp 475–480)

  • Morais RA, Depczynski M, Fulton C, Marnane M, Narvaez P, Huertas V, Brandl SJ, Bellwood DR (2020) Severe coral loss shifts energetic dynamics on a coral reef. Funct Ecol 34(7):1507–1518

    Google Scholar 

  • Moran DP, Reaka ML (1988) Bioerosion and availability of shelter for benthic reef organisms. Mar Ecol Prog Ser 44:249–263

    Google Scholar 

  • Moran DP, Reaka-Kudla ML (1991) Effects of disturbance, disruption and enhancement of coral reef cryptofaunal populations by hurricanes. Coral Reefs 9:215–224

    Google Scholar 

  • Morrison CL, Rios R, Duffy JE (2004) Phylogenetic evidence for an ancient rapid radiation of Caribbean sponge-dwelling snapping shrimps (Synalpheus). Mol Phylogenet Evol 30:563–581

    CAS  PubMed  Google Scholar 

  • Morse DE, Morse ANC (1991) Enzymatic characterization of the morphogen recognized by Agaricia humilis (scleractinian coral) larvae. Biol Bull 181:104–122

    CAS  PubMed  Google Scholar 

  • Morse DE, Hooker N, Morse ANC, Jensen RA (1988) Control of larval metamorphosis and recruitment in sympatric agariciid corals. J Exp Mar Biol Ecol 116:193–217

    Google Scholar 

  • Morse ANC, Iwao K, Baba M, Shimoike K, Hayashibara T, Omori M (1996) An ancient chemosensory mechanism brings new life to coral reefs. Biol Bull 191:149–154

    PubMed  Google Scholar 

  • Mumby PJ, Steneck RS (2018) Paradigm lost: dynamic nutrients and missing detritus on coral reefs. Bioscience 68:487–495

    Google Scholar 

  • Munday PL, Donelson JM, Domingos JA (2017) Potential for adaptation to climate change in a coral reef fish. Global Change Biol 23:307–317

    Google Scholar 

  • Murray A, Wong E, Hutchings P (2015) Nephtyidae (Annelida: Phyllodocida) of Lizard Island, Great Barrier Reef, Australia. Zootaxa 4019:414–436

    PubMed  Google Scholar 

  • Myers AA (1985) Shallow water coral reef and mangrove Amphipoda (Gammaridea) of Fiji. Rec Aust Mus 5(1):143

    Google Scholar 

  • Myers A, Southgate T (1980) Artificial substrates as a means of monitoring rocky shore cryptofauna. J Mar Biol Assoc Uk 60:963–975

    Google Scholar 

  • Nagelkerken I, Dorenbosch M, Verberk WCEP, de la Moriniere EC, van der Velde G (2000) Day-night shifts of fishes between shallow-water biotopes of a Caribbean bay, with emphasis on the nocturnal feeding of Haemulidae and Lutjanidae. Mar Ecol Prog Ser 194:55–64

    Google Scholar 

  • Nakamura Y, Shibuno T, Lecchini D, Kawamura T, Watanabe Y (2009) Spatial variability in habitat associations of pre- and post-settlement stages of coral reef fishes at Ishigaki Island, Japan. Mar Biol 156:2413–2419

    Google Scholar 

  • Nava H, Carballo JL (2008) Chemical and mechanical bioerosion of boring sponges from Mexican Pacific coral reefs. J Exp Biol 211:2827–2831

    PubMed  Google Scholar 

  • Nava H, Carballo JL (2013) Environmental factors shaping boring sponge assemblages at Mexican Pacific coral reefs. Mar Ecol-Evol Persp 34:269–279

    CAS  Google Scholar 

  • Nava H, Ramirez-Herrera MT, Figueroa-Camacho AG, Villegas-Sanchez BM (2014) Habitat characteristics and environmental factors related to boring sponge assemblages on coral reefs near populated coastal areas on the Mexican Eastern Pacific coast. Mar Biodivers 44:45–54

    Google Scholar 

  • Neigel JE, Avise JC (1983) Histocompatibility bioassays of population structure in marine sponges: Clonal structure in Verongia longissima and Lotrochota birotulata. J Hered 74:134–140

    Google Scholar 

  • Nelson WG (1979) Experimental studies of selective predation on amphipods: consequences for amphipod distribution and abundance. J Exp Mar Biol Ecol 38:225–245

    Google Scholar 

  • Nelson HR, Kuempel CD, Altieri AH (2016) The resilience of reef invertebrate biodiversity to coral mortality. Ecosphere 7:e1399

    Google Scholar 

  • Nemeth RS (1998) The effect of natural variation in substrate architecture on the survival of juvenile bicolor damselfish. Environ Biol Fish 53:129–141

    Google Scholar 

  • Neumann AC (1966) Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge, Cliona lampa. Limnol Oceanogr 11:92–108

    Google Scholar 

  • Nogueira JMD, Hutchings P, Carrerette O (2015a) Polycirridae (Annelida, Terebelliformia) from Lizard Island, Great Barrier Reef, Australia. Zootaxa 4019:437–483

    Google Scholar 

  • Nogueira JMDM, Hutchings P, Carrerette O (2015b) Terebellidae (Annelida, Terebelliformia) from Lizard Island, great barrier reef, Australia. Zootaxa 4019:484–576

    Google Scholar 

  • Norstrom AV, Nystrom M, Jouffray JB, Folke C, Graham NAJ, Moberg F, Olsson P, Williams GJ (2016) Guiding coral reef futures in the Anthropocene. Front Ecol Environ 14:490–498

    Google Scholar 

  • O’Loughlin PM, Rowe FW (2005) A new asterinid genus from the Indo-West Pacific region, including five new species (Echinodermata: Asteroidea: Asterinidae). Memoirs of Museum Victoria 62:181–189

    Google Scholar 

  • O’Loughlin PM, Rowe FW (2006) A systematic revision of the asterinid genus Aquilonastra OʼLoughlin, 2004 (Echinodermata: Asteroidea). Memoirs of Museum Victoria 63:257–287

    Google Scholar 

  • Ober GT, Diaz-Pulido G, Thornber C (2016) Ocean acidification influences the biomass and diversity of reef-associated turf algal communities. Mar Biol 163:204

    Google Scholar 

  • Ochavillo D, Tofaeono S, Sabater M, Trip EL (2011) Population structure of Ctenochaetus striatus (Acanthuridae) in Tutuila, American Samoa: the use of size-at-age data in multi-scale population size surveys. Fish Res 107:14–21

    Google Scholar 

  • Ochoa-Rivera V, Granados-Barba A, Solis-Weiss V (2000) The polychaete cryptofauna from Cozumel Island, Mexican Caribbean. B Mar Sci 67:137–146

    Google Scholar 

  • Ohman MC, Rajasuriya A, Linden O (1993) Human disturbances on coral reefs in Sri Lanka - a case study. Ambio 22:474–480

    Google Scholar 

  • Ohman MC, Munday PL, Jones GP, Caley MJ (1998) Settlement strategies and distribution patterns of coral-reef fishes. J Exp Mar Biol Ecol 225:219–238

    Google Scholar 

  • Oliveira MV, Santos PS, Almeida AO (2015) First record of the sponge-dwelling shrimp Synalpheus dardeaui (Crustacea: Decapoda: Alpheidae) in the south-western Atlantic. Marine Biodiversity Records 8:e51

    Google Scholar 

  • Olivera BM (2002) Conus venom peptides: reflections from the biology of clades and species. Annu Rev Ecol Syst 33:25–47

    Google Scholar 

  • Opitz S (1993) A quantitative model of the trophic interactions in a Caribbean coral reef ecosystem. Trophic Models of Aquatic Ecosystems 26:259–267

    Google Scholar 

  • Ormond RFG, Roberts JM, Jan RQ (1996) Behavioural differences in microhabitat use by damselfishes (Pomacentridae): Implications for reef fish biodiveristy. J Exp Mar Biol Ecol 202:85–95

    Google Scholar 

  • Ortiz J-C, Wolff NH, Anthony KRN, Devlin M, Lewis S, Mumby PJ (2018) Impaired recovery of the great barrier reef under cumulative stress. Sci Adv 4:eaar6127

    PubMed  PubMed Central  Google Scholar 

  • Ory NC, Dudgeon D, Duprey N, Thiel M (2014) Effects of predation on diel activity and habitat use of the coral-reef shrimp Cinetorhynchus hendersoni (Rhynchocinetidae). Coral Reefs 33:639–650

    Google Scholar 

  • Ott B, Lewis JB (1972) Importance of gastropod Coralliophila abbreviata (Lamarck) and polychaete Hermodice carunculata (Pallas) as coral reef predators. Can J Zool 50:1651–1656

    Google Scholar 

  • Papineau D, Walker JJ, Mojzsis SJ, Pace NR (2005) Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Appl Environ Microbiol 71:4822–4832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parravicini V, Casey JM, Schiettekatte NMD, Brandl SJ, Pozas-Schacre C, Carlot J, Edgar GJ, Graham NAJ, Harmelin-Vivien M, Kulbicki M, Strona G, Stuart-Smith RD (2021) Delineating reef fish trophic guilds with global gut content data synthesis and phylogeny. Plos Biol 18:e3000702

    Google Scholar 

  • Pearman JK, Anlauf H, Irigoien X, Carvalho S (2016) Please mind the gap - visual census and cryptic biodiversity assessment at central Red Sea coral reefs. Mar Environ Res 118:20–30

    CAS  PubMed  Google Scholar 

  • Pearman JK, Leray M, Villalobos R, Machida RJ, Berumen ML, Knowlton N, Carvalho S (2018) Cross-shelf investigation of coral reef cryptic benthic organisms reveals diversity patterns of the hidden majority. Sci Rep-Uk 8(1):1–7

    CAS  Google Scholar 

  • Pérez-Pagán BS, Mercado-Molina AE (2018) Evaluation of the effectiveness of 3D-printed corals to attract coral reef fish at Tamarindo Reef, Culebra, Puerto Rico. Cons Evid 15:43–47

    Google Scholar 

  • Perry CT (1998) Macroborers within coral framework at Discovery Bay, north Jamaica: species distribution and abundance, and effects on coral preservation. Coral Reefs 17:277–287

    Google Scholar 

  • Perry CT (2000) Macroboring of Pleistocene coral communities, Falmouth Formation, Jamaica. Palaios 15:483–491

    Google Scholar 

  • Perry CT, Harborne AR (2016) Bioerosion on modern reefs: impacts and responses under changing ecological and environmental conditions. Coral Reefs Crossroads 6:69–101

    Google Scholar 

  • Perry CT, Hepbum LJ (2008) Syn-depositional alteration of coral reef framework through bioerosion, encrustation and cementation: taphonomic signatures of reef accretion and reef depositional events. Earth-Sci Rev 86:106–144

    Google Scholar 

  • Peyrot-Clausade M (1979) Contribution to the study of motile reef cryptofauna (Tulear, Madagascar). Ann I Oceanogr Paris 55:71–93

    Google Scholar 

  • Peyrot-Clausade M (1980) Motile cryptofauna of Tulear reef flats. Mar Biol 59:43–47

    Google Scholar 

  • Pisapia C, Burn D, Pratchett MS (2019) Changes in the population and community structure of corals during recent disturbances (February 2016-October 2017) on Maldivian coral reefs. Sci Rep-Uk 9(1):1–2

    CAS  Google Scholar 

  • Plaisance L, Knowlton N, Paulay G, Meyer C (2009) Reef-associated crustacean fauna: biodiversity estimates using semi-quantitative sampling and DNA barcoding. Coral Reefs 28:977–986

    Google Scholar 

  • Plaisance L, Caley MJ, Brainard RE, Knowlton N (2011) The diversity of coral reefs: what are we missing? PLoS ONE 6(10):e25026

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plucer-Rosario G (1987) The effect of substratum on the growth of Terpios, an encrusting sponge which kills corals. Coral Reefs 5:197–200

    Google Scholar 

  • Polonia ARM, Cleary DFR, de Voogd NJ, Renema W, Hoeksema BW, Martins A, Gomes NCM (2015) Habitat and water quality variables as predictors of community composition in an Indonesian coral reef: a multi-taxon study in the Spermonde Archipelago. Sci Total Environ 537:139–151

    CAS  PubMed  Google Scholar 

  • Porter JW, Woodley JD, Smith GJ, Neigel JE, Battey JF, Dallmeyer DG (1981) Population trends among Jamaican reef corals. Nature 294:249–250

    Google Scholar 

  • Pratchett MS, Coker DJ, Jones GP, Munday PL (2012) Specialization in habitat use by coral reef damselfishes and their susceptibility to habitat loss. Ecol Evol 2:2168–2180

    PubMed  PubMed Central  Google Scholar 

  • Pratchett MS, Graham NAJ, Cole AJ (2013) Specialist corallivores dominate butterflyfish assemblages in coral-dominated reef habitats. J Fish Biol 82:1177–1191

    CAS  PubMed  Google Scholar 

  • Prazeres M, Renema W (2019) Evolutionary significance of the microbial assemblages of large benthic Foraminifera. Biol Rev 94:828–848

    PubMed  Google Scholar 

  • Prazeres M, Ainsworth T, Roberts TE, Pandolfi JM, Leggat W (2017) Symbiosis and microbiome flexibility in calcifying benthic foraminifera of the great barrier reef. Microbiome 5(1):1–1

    Google Scholar 

  • Pringault O, Duran R, Jacquet S, Torreton JP (2008) Temporal variations of microbial activity and diversity in marine tropical sediments (New Caledonia lagoon). Microb Ecol 55:247–258

    CAS  PubMed  Google Scholar 

  • Prochazka K (1998) Spatial and trophic partitioning in cryptic fish communities of shallow subtidal reefs in False Bay, South Africa. Environ Biol Fish 51:201–220

    Google Scholar 

  • Puk LD, Ferse SCA, Wild C (2016) Patterns and trends in coral reef macroalgae browsing: a review of browsing herbivorous fishes of the Indo-Pacific. Rev Fish Biol Fisher 26:53–70

    Google Scholar 

  • Radecker N, Pogoreutz C, Voolstra CR, Wiedenmann J, Wild C (2015) Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol 23:490–497

    PubMed  Google Scholar 

  • Randall JE, Allen GR, Steene RC (1997) Fishes of the great barrier reef and coral sea. University of Hawaii Press

    Google Scholar 

  • Randall JE (1967) Food habits of reef fishes of the West Indies. Hawaii institute of marine biology, University of Hawaii, Honolulu, and Bernice P. Bishop Museum, Honolulu

  • Rankin TL, Sponaugle S (2014) Characteristics of settling coral reef fish are related to recruitment timing and success. PLoS ONE 9(9):e108871

    PubMed  PubMed Central  Google Scholar 

  • Rasser MW, Riegl B (2002) Holocene coral reef rubble and its binding agents. Coral Reefs 21:57–72

    Google Scholar 

  • Raymundo LJ, Maypa AP, Gomez ED, Cadiz P (2007) Can dynamite-blasted reefs recover? a novel, low-tech approach to stimulating natural recovery in fish and coral populations. Mar Pollut Bull 54:1009–1019

    CAS  PubMed  Google Scholar 

  • Raymundo LJ, Licuanan WL, Kerr AM (2018) Adding insult to injury: ship groundings are associated with coral disease in a pristine reef. PLoS ONE 13(9):0202939

    Google Scholar 

  • Reaka M (1980) Resource limitation in mobile cryptic species - foor or space. Americal Zoologist 20:885–885

    Google Scholar 

  • Reaka ML (1987) Adult-juvenile interactions in benthic reef crustaceans. B Mar Sci 41:108–134

    Google Scholar 

  • Reaka M. (1985) Interactions between fishes and motile benthic invertebrates on reefs: the significance of motility vs. defensive adaptations. In: Proceedings of the fifth international coral reef congress, (pp 429–444)

  • Reaka-Kudla M (1997) The global biodiversity of coral reefs: a comparison with rainforests. In: Reaka-Kudla M, Wilson DE, Wilson EO (eds) Biodiversity II: understanding and protecting our biological resources. Joseph Henry Press, pp 83–108

    Google Scholar 

  • Reavis RH (1997) The natural history of a monogamous coral reef fish, Valenciennea strigata (Gobiidae). 2. Behavior, mate fidelity and reproductive success. Environ Biol Fish 49:247–257

    Google Scholar 

  • Reinthal PN, Kensley B, Lewis SM (1984) Dietary shifts in the queen triggerfish, Balistes vetula, in the absence of its primary food item, Diadema antillarum. Mar Ecol 5:191–195

    Google Scholar 

  • Renema W (2008) Habitat selective factors influencing the distribution of larger benthic foraminiferal assemblages over the Kepulauan Seribu. Mar Micropaleontol 68:286–298

    Google Scholar 

  • Renema W (2010) Is increased calcarinid (foraminifera) abundance indicating a larger role for macro-algae in Indonesian Plio-Pleistocene coral reefs? Coral Reefs 29:165–173

    Google Scholar 

  • Reyes-Nivia C, Diaz-Pulido G, Kline D, Guldberg OH, Dove S (2013) Ocean acidification and warming scenarios increase microbioerosion of coral skeletons. Global Change Biol 19:1919–1929

    Google Scholar 

  • Rhyne AL, Calado R, Dos Santos A (2012) Lysmata jundalini, a new peppermint shrimp (Decapoda, Caridea, Hippolytidae) from the Western Atlantic. Zootaxa 3579(1):71–79

    Google Scholar 

  • Ribas J, Hutchings P (2015) Lizard Island Polychaete Workshop: sampling sites and a checklist of polychaetes. Zootaxa 4019:7–34

    PubMed  Google Scholar 

  • Ribes M, Coma R, Atkinson MJ, Kinzie RA (2003) Particle removal by coral reef communities: picoplankton is a major source of nitrogen. Mar Ecol Prog Ser 257:13–23

    Google Scholar 

  • Ribes M, Coma R, Atkinson MJ, Kinzie RA (2005) Sponges and ascidians control removal of particulate organic nitrogen from coral reef water. Limnol Oceanogr 50:1480–1489

    CAS  Google Scholar 

  • Rice MM, Ezzat L, Burkepile DE (2019) Corallivory in the Anthropocene: interactive effects of anthropogenic stressors and corallivory on coral reefs. Front Mar Sci 5:525

    Google Scholar 

  • Rice ME, Macintyre IG (1982) Distribution of Sipuncula in the coral reef community. The Atlantic barrier reef ecosystem at carrie bow Cay, Belize, 1 structure and communities

  • Richardson LE, Graham NAJ, Pratchett MS, Hoey AS (2017) Structural complexity mediates functional structure of reef fish assemblages among coral habitats. Environ Biol Fish 100:193–207

    Google Scholar 

  • Riding R, Martin JM, Braga JC (1991) Coral stromatolite reef framework, upper Miocene, Almeria, Spain. Sedimentology 38:799–818

    Google Scholar 

  • Riegl B (2001) Degradation of reef structure, coral and fish communities in the Red Sea by ship groundings and dynamite fisheries. B Mar Sci 69:595–611

    Google Scholar 

  • Riegl B, Luke KE (1998) Ecological parameters of dynamited reefs in the northern red sea and their relevance to reef rehabilitation. Mar Pollut Bull 37:488–498

    CAS  Google Scholar 

  • Rilov G, Figueira WF, Lyman SJ, Crowder LB (2007) Complex habitats may not always benefit prey: linking visual field with reef fish behavior and distribution. Mar Ecol Prog Ser 329:225–238

    Google Scholar 

  • Roberts CM, Ormond RFG (1987) Habitat complexity and coral reef fish diversity and abundance on Red Sea fringing reefs. Mar Ecol Prog Ser 41:1–8

    CAS  Google Scholar 

  • Rodriguez-Martinez RE, Jordan-Garza AG, Baker DM, Jordan-Dahlgren E (2012) Competitive interactions between corals and Trididemnum solidum on Mexican Caribbean reefs. Coral Reefs 31:571–577

    Google Scholar 

  • Roff G, Bejarano S, Priest M, Marshell A, Chollett I, Steneck RS, Doropoulos C, Golbuu Y, Mumby PJ (2019) Seascapes as drivers of herbivore assemblages in coral reef ecosystems. Ecol Monogr 89(1):e01336

    Google Scholar 

  • Rogers CS, Garrison VH (2001) Ten years after the crime: lasting effects of damage from a cruise ship anchor on a coral reef in St. John. US Virgin Islands B Mar Sci 69:793–803

    Google Scholar 

  • Rogers A, Blanchard JL, Mumby PJ (2014) Vulnerability of coral reef fisheries to a loss of structural complexity. Curr Biol 24:1000–1005

    CAS  PubMed  Google Scholar 

  • Rogers A, Harborne AR, Brown CJ, Bozec YM, Castro C, Chollett I, Hock K, Knowland CA, Marshell A, Ortiz JC, Razak T, Roff G, Samper-Villarreal J, Saunders MI, Wolff NH, Mumby PJ (2015) Anticipative management for coral reef ecosystem services in the 21st century. Global Change Biol 21:504–514

    Google Scholar 

  • Rogers A, Blanchard JL, Mumby PJ (2018) Fisheries productivity under progressive coral reef degradation. J Appl Ecol 55:1041–1049

    Google Scholar 

  • Roth L, Muller EM, van Woesik R (2013) Tracking Acropora fragmentation and population structure through thermal-stress events. Ecol Model 263:223–232

    Google Scholar 

  • Roth F, Saalmann F, Thomson T, Coker DJ, Villalobos R, Jones BH, Wild C, Carvalho S (2018) Coral reef degradation affects the potential for reef recovery after disturbance. Mar Environ Res 142:48–58

    CAS  PubMed  Google Scholar 

  • Rothans TC, Miller AC (1991) A link between biologically imported particulate organic nutrients and the detritus food web in reef communities. Mar Biol 110:145–150

    Google Scholar 

  • Ruhl EJ, Dixson DL (2019) 3D printed objects do not impact the behavior of a coral-associated damselfish or survival of a settling stony coral. PLoS ONE 14(8):e0221157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Abierno A, Armenteros M (2017) Coral reef habitats strongly influence the diversity of macro-and meiobenthos in the Caribbean. Mar Biodivers 47:101–111

    Google Scholar 

  • Rule MJ, Smith SD (2005) Spatial variation in the recruitment of benthic assemblages to artificial substrata. Mar Ecol Prog Ser 290:67–78

    Google Scholar 

  • Russell BD, Degnan BM, Garson MJ, Skilleter GA (2003) Distribution of a nematocyst-bearing sponge in relation to potential coral donors. Coral Reefs 22:11–16

    Google Scholar 

  • Russo AR (1977) Water flow and the distribution and abundance of echinoids (genus Echinometra) on an Hawaiian reef. Mar Freshwater Res 28:693–702

    Google Scholar 

  • Rutzler K, Piantoni C, van Soest RWM, Diaz MC (2014) Diversity of sponges (Porifera) from cryptic habitats on the belize barrier reef near carrie bow cay. Zootaxa 3805:1–129

    Google Scholar 

  • Salas-Saavedra M, Dechnik B, Webb GE, Webster JM, Zhao JX, Nothdurft LD, Clark TR, Graham T, Duce S (2018) Holocene reef growth over irregular Pleistocene karst confirms major influence of hydrodynamic factors on Holocene reef development. Quat Sci Rev 180:157–176

    Google Scholar 

  • Salomon CE, Faulkner DJ (2002) Localization studies of bioactive cyclic peptides in the ascidian Lissoclinum patella. J Nat Prod 65:689–692

    CAS  PubMed  Google Scholar 

  • Sano M (2000) Stability of reef fish assemblages: responses to coral recovery after catastrophic predation by Acanthaster planci. Mar Ecol Prog Ser 198:121–130

    Google Scholar 

  • Sano M (2001) Short-term responses of fishes to macroalgal overgrowth on coral rubble on a degraded reef at Iriomote Island, Japan. B Mar Sci 68:543–556

    Google Scholar 

  • Sano M, Shimizu M, Nose Y (1987) Long-term effects of destruction of hermatypic corals by Acanthaster planci infestation on reef fish communities at Iriomote Island, Japan. Mar Ecol Prog Ser 37:191–199

    Google Scholar 

  • Sarmento VC, Souza TP, Esteves AM, Santos PJP (2015) Effects of seawater acidification on a coral reef meiofauna community. Coral Reefs 34:955–966

    Google Scholar 

  • Schoener A (1974) Experimental zoogeography: colonization of marine mini-islands. Am Nat 108:715–738

    Google Scholar 

  • Schoener A (1982) Artificial substrates in marine environments. In: Cairns J (ed) Artificial substrates. Ann Arbor Scientific Publications, pp 1–22

    Google Scholar 

  • Schönberg CHL (2001) Small-scale distribution of Great Barrier Reef bioeroding sponges in shallow water. Ophelia 55:39–54

    Google Scholar 

  • Schonberg CHL (2002) Substrate effects on the bioeroding demosponge Cliona orientalis. 1. Bioerosion rates. Mar Ecol 23:313–326

    Google Scholar 

  • Schonberg CHL (2003) Substrate effects on the bioeroding demosponge Cliona orientalis. 2. Substrate colonisation and tissue growth. Mar Ecol 24:59–74

    Google Scholar 

  • Schonberg CHL, Fang JKH, Carreiro-Silva M, Tribollet A, Wisshak M (2017) Bioerosion: the other ocean acidification problem. Ices J Mar Sci 74:895–925

    Google Scholar 

  • Scoffin TP (1993) The geological effects of hurricanes on coral reefs and the interpretation of storm deposits. Coral Reefs 12:203–221

    Google Scholar 

  • Sedberry GR, Carter J (1993) The fish community of a shallow tropical lagoon in Belize, Central America. Estuaries 16:198–215

    Google Scholar 

  • Sekar V, Rajasekaran R, Sachithanandam V, Sankar R, Sridhar R, Kingsley PW (2016) Species diversity of Polychaete in coral reef ecosystem of Great Nicobar Island, India. Nusant Biosci 8:71–76

    Google Scholar 

  • Shannon AM, Power HE, Webster JM, Vila-Concejo A (2013) Evolution of coral rubble deposits on a reef platform as detected by remote sensing. Remote Sens-Basel 5:1–18

    Google Scholar 

  • Shashar N, Cohen Y, Loya Y, Sar N (1994a) Nitrogen-fixation (acetylene-reduction) in stony corals - evidence for coral-bacteria interactions. Mar Ecol Prog Ser 111:259–264

    CAS  Google Scholar 

  • Shashar N, Feldstein T, Cohen Y, Loya Y (1994b) Nitrogen-fixation (acetylene-reduction) on a coral reef. Coral Reefs 13:171–174

    Google Scholar 

  • Shaver EC, Silliman BR (2017) Time to cash in on positive interactions for coral restoration. PeerJ 5:e3499

    PubMed  PubMed Central  Google Scholar 

  • Shibuno T, Hashimoto H, Gushima K (1994) Changes with growth in feeding habits and gravel turning behavior of the wrasse, Coris gaimard. Jpn J Ichthyol 41:301–306

    Google Scholar 

  • Shibuno T, Hashimoto K, Abe O, Takada Y, Kawasaki H (2002) Disturbed coral reefs and the effects upon the structure of fish communities at Ishigaki Island, Japan. Fisheries Sci 68:139–142

    Google Scholar 

  • Shiell G (2004) Field observations of juvenile sea cucumbers. SPC Beche-De-Mer Inform Bull 20:6–11

    Google Scholar 

  • Shinn EA (1976) Coral-reef recovery in florida and persian gulf. Environ Geol 1:241–254

    Google Scholar 

  • Sides E, Woodley J (1985) Niche separation in three species of Ophiocoma (Echinodermata: Ophiuroidea) in Jamaica, West Indies. B Mar Sci 36:701–715

    Google Scholar 

  • Sims MA (1998) Population density of Octopus cyanea in Kaneohe Bay.

  • Sloan N (1979) Microhabitat and resource utilization in cryptic rocky intertidal echinoderms at Aldabra Atoll, Seychelles. Mar Biol 54:269–279

    Google Scholar 

  • Small A, Adey WH, Spoon D (1998) Are current estimates of coral reef biodiversity too low? the view through the window of a microcosm. Atoll Res Bull 450–458:20

    Google Scholar 

  • Smith SDA, Rule MJ (2002) Artificial substrata in a shallow sublittoral habitat: do they adequately represent natural habitats or the local species pool? J Exp Mar Biol Ecol 277:25–41

    Google Scholar 

  • Solan M, Bennett E, Mumby P, Leyland J, Godbold J (2020) Benthic-based contributions to climate change mitigation and adaptation. Philos T R Soc B 375:20190107

    Google Scholar 

  • Sorokin YI (1995) Reef zoobenthos. In: Heldmaier G, Lange OL, Mooney HA, Sommer U (eds) Coral reef ecology ecological studies (Analysis and Synthesis). Springer, pp 161–214

    Google Scholar 

  • Spalding AK, Biedenweg K (2017) Socializing the coast: engaging the social science of tropical coastal research. Estuar Coast Shelf S 187:1–8

    Google Scholar 

  • Sponaugle S, Walter KD, Grorud-Colvert K, Paddack MJ (2012) Influence of marine reserves on reef fish recruitment in the upper florida keys. Coral Reefs 31:641–652

    Google Scholar 

  • St John J, Jones GP, Sale PF (1989) Distribution and abundance of soft-sediment meiofauna and a predatory goby in a coral reef lagoon. Coral Reefs 8:51–57

    Google Scholar 

  • Steger R (1987) Effects of refuges and recruitment on gonodactylid stomatopods, a guild of mobile prey. Ecology 68:1520–1533

    Google Scholar 

  • Stella JS, Jones GP, Pratchett MS (2010) Variation in the structure of epifaunal invertebrate assemblages among coral hosts. Coral Reefs 29:957–973

    Google Scholar 

  • Stella JS, Pratchett MS, Hutchings PA, Jones GP (2011) Coral-associated invertebrates: diversity, ecological importance and vulnerability to disturbance. Oceanogr Mar Biol Annu Rev 49:43–104

    Google Scholar 

  • Stepien A, Pabis K, Blazewicz M (2019) Small-scale species richness of the great barrier reef tanaidaceans-results of the CReefs compared with worldwide diversity of coral reef tanaidaceans. Mar Biodivers 49:1169–1185

    Google Scholar 

  • Stewart HL, Holbrook SJ, Schmitt RJ, Brooks AJ (2006) Symbiotic crabs maintain coral health by clearing sediments. Coral Reefs 25:609–615

    Google Scholar 

  • Stromberg H, Kvarnemo C (2005) Effects of territorial damselfish on cryptic bioeroding organisms on dead Acropora formosa. J Exp Mar Biol Ecol 327:91–102

    Google Scholar 

  • Stuart-Smith RD, Brown CJ, Ceccarelli DM, Edgar GJ (2018) Ecosystem restructuring along the great barrier reef following mass coral bleaching. Nature 560:92–96

    CAS  PubMed  Google Scholar 

  • Sugihara K, Masunaga N, Fujita K (2006) Latitudinal changes in larger benthic foraminiferal assemblages in shallow-water reef sediments along the Ryukyu Islands, Japan. Isl Arc 15:437–454

    Google Scholar 

  • Syms C (1995) Multiscale analysis of habitat association in a guild of blennioid fishes. Mar Ecol Prog Ser 125:31–43

    Google Scholar 

  • Syms C, Jones GP (2000) Disturbance, habitat structure, and the dynamics of a coral-reef fish community. Ecology 81:2714–2729

    Google Scholar 

  • Takada Y, Abe O, Shibuno T (2007) Colonization patterns of mobile cryptic animals into interstices of coral rubble. Mar Ecol Prog Ser 343:35–44

    Google Scholar 

  • Takada Y, Abe O, Shibuno T (2008) Cryptic assemblages in coral-rubble interstices along a terrestrial-sediment gradient. Coral Reefs 27:665–675

    Google Scholar 

  • Takada Y, Abe O, Shibuno T (2012) Variations in cryptic assemblages in coral-rubble interstices at a reef slope in Ishigaki Island, Japan. Fisheries Sci 78:91–98

    CAS  Google Scholar 

  • Takada Y, Ikeda H, Hirano Y, Saigusa M, Hashimoto K, Abe O, Shibuno T (2014) Assemblages of cryptic animals in coral rubble along an estuarine gradient spanning mangrove, seagrass, and coral reef habitats. B Mar Sci 90:723–740

    Google Scholar 

  • Takada Y, Abe O, Hashimoto K, Shibuno T (2016) Colonization of coral rubble by motile cryptic animals: Differences between contiguous versus raised substrates from the bottom. J Exp Mar Biol Ecol 475:62–72

    Google Scholar 

  • Takayanagi S, Sakai Y, Hashimoto H, Gushima K (2003) Sleeping mound construction using coral fragments by the rockmover wrasse. J Fish Biol 63:1352–1356

    Google Scholar 

  • Tarazi E, Parnas H, Lotan O, Zoabi M, Oren A, Josef N, Shashar N (2019) Nature-centered design: how design can support science to explore ways to restore coral reefs. Des J 22:1619–1628

    Google Scholar 

  • Tea YK, Pinheiro HT, Shepherd B, Rocha LA (2019) Cirrhilabrus wakanda, a new species of fairy wrasse from mesophotic ecosystems of Zanzibar, Tanzania, Africa (Teleostei, Labridae). Zookeys 863:85–96

    PubMed  PubMed Central  Google Scholar 

  • Tebben J, Motti CA, Siboni N, Tapiolas DM, Negri AP, Schupp PJ, Kitamura M, Hatta M, Steinberg PD, Harder T (2015) Chemical mediation of coral larval settlement by crustose coralline algae. Sci Rep-Uk 5(1):1–1

    Google Scholar 

  • Tebbett SB, Bellwood DR (2020) Sediments ratchet-down coral reef algal turf productivity. Sci Total Environ 713:136709

    CAS  PubMed  Google Scholar 

  • Tebbett SB, Streit RP, Bellwood DR (2019) Expansion of a colonial ascidian following consecutive mass coral bleaching at Lizard Island, Australia. Mar Environ Res 144:125–129

    CAS  PubMed  Google Scholar 

  • Templado J, Paulay G, Gittenberger A, Meyer C (2010) Sampling the marine realm. ABC Taxa 8:273–307

    Google Scholar 

  • Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92

    Google Scholar 

  • Thomas JD (1993) Biological monitoring and tropical biodiversity in marine environments - a critique with recommendations, and comments on the use of amphipods as bioindicators. J Nat Hist 27:795–806

    Google Scholar 

  • Thomas FIM, Atkinson MJ (1997) Ammonium uptake by coral reefs: Effects of water velocity and surface roughness on mass transfer. Limnol Oceanogr 42:81–88

    CAS  Google Scholar 

  • Thompson AR (2004) Habitat and mutualism affect the distribution and abundance of a shrimp-associated goby. Mar Freshwater Res 55:105–113

    Google Scholar 

  • Thompson CA, Matthews S, Hoey AS, Pratchett MS (2019) Changes in sociality of butterflyfishes linked to population declines and coral loss. Coral Reefs. https://doi.org/10.1007/s00338-00019-01792-x

    Article  Google Scholar 

  • Thornborough KJ (2012) Rubble-dominated reef flat processes and development: evidence from One Tree Reef, southern Great Barrier Reef. University of Sydney

    Google Scholar 

  • Ticzon VS, Mumby PJ, Samaniego BR, Bejarano-Chavarro S, David LT (2012) Microhabitat use of juvenile coral reef fish in Palau. Environ Biol Fish 95:355–370

    Google Scholar 

  • Tilbrook KJ, Hayward PJ, Gordon DP (2001) Cheilostomatous bryozoa from vanuatu. Zool J Linn Soc-Lond 131:35–109

    Google Scholar 

  • Tornabene L, Ahmadia GN, Berumen ML, Smith DJ, Jompa J, Pezold F (2013) Evolution of microhabitat association and morphology in a diverse group of cryptobenthic coral reef fishes (Teleostei: Gobiidae: Eviota). Mol Phylogenet Evol 66:391–400

    PubMed  Google Scholar 

  • Tratalos JA, Austin TJ (2001) Impacts of recreational SCUBA diving on coral communities of the Caribbean island of Grand Cayman. Biol Conserv 102:67–75

    Google Scholar 

  • Trautman DA, Hinde R, Borowitzka MA (2000) Population dynamics of an association between a coral reef sponge and a red macroalga. J Exp Mar Biol Ecol 244:87–105

    Google Scholar 

  • Trautman DA, Hinde R, Borowitzka MA (2003) The role of habitat in determining the distribution of a sponge-red alga symbiosis on a coral reef. J Exp Mar Biol Ecol 283:1–20

    Google Scholar 

  • Tribollet A, Golubic S (2011) Reef bioerosion: agents and processes. coral reefs: an ecosystem in transition, 435–449

  • Troyer EM, Coker DJ, Berumen ML (2018) Comparison of cryptobenthic reef fish communities among microhabitats in the Red Sea. PeerJ 6:e5014

    PubMed  PubMed Central  Google Scholar 

  • Tupper M (2007) Identification of nursery habitats for commercially valuable humphead wrasse Cheilinus undulatus and large groupers (Pisces : Serranidae) in Palau. Mar Ecol Prog Ser 332:189–199

    Google Scholar 

  • Ullah H, Nagelkerken I, Goldenberg SU, Fordham DA (2018) Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. Plos Biol 16(1):e2003446

    PubMed  PubMed Central  Google Scholar 

  • Valles H, Kramer DL, Hunte W (2006) A standard unit for monitoring recruitment of fishes to coral reef rubble. J Exp Mar Biol Ecol 336:171–183

    Google Scholar 

  • Valles H, Kramer DL, Hunte W (2008) Temporal and spatial patterns in the recruitment of coral-reef fishes in Barbados. Mar Ecol Prog Ser 363:257–272

    Google Scholar 

  • Valles H, Miller S, Oxenford HA (2020) The effect of microhabitat patch size on settlement differs among co-occurring coral reef fishes. Coral Reefs 39:487–492

    Google Scholar 

  • Van Soest RWM (2009) New sciophilous sponges from the Caribbean (Porifera: Demospongiae). Zootaxa 2107(1):1–40

    Google Scholar 

  • Vasseur P. (1977) Cryptic sessile communities in various coral formations on reef flats in the vicinity of Tulear (Madagascar). In: Proc 3rd int coral reef symp, (pp 95–100)

  • Veeramuthu S, Ramadoss R, Subramaniyan B, Jeyaram S, Fernando OJ (2012) Abundance of the boring polychaetes of Eunicidae (Annelida) in Great Nicobar Islands. Our Nature 10:76–88

    Google Scholar 

  • Victor S (2008) Stability of reef framework and post settlement mortality as the structuring factor for recovery of Malakal Bay Reef, Palau, Micronesia: 25 years after a severe COTS outbreak. Estuar Coast Shelf S 77:175–180

    Google Scholar 

  • Viehman TS, Hench JL, Griffin SP, Malhotra A, Egan K, Halpin PN (2018) Understanding differential patterns in coral reef recovery: chronic hydrodynamic disturbance as a limiting mechanism for coral colonization. Mar Ecol Prog Ser 605:135–150

    Google Scholar 

  • Vieira LM, Farrapeira CM, Amaral FD, Lira SM (2012) Bryozoan biodiversity in saint peter and saint paul Archipelago, Brazil. Cah Biol Mar 53:159–167

    Google Scholar 

  • Vijay Anand P, Pillai N (2005) Community organization of coral reef fishes in the rubble sub-habitat of Kavaratti Atoll, Lakshadweep, India. J Mar Biol Assoc India 47:77–82

    Google Scholar 

  • Virnstein RW, Curran MC (1986) Colonization of artificial seagrass versus time and distance from source. Mar Ecol Prog Ser 29:279–288

    Google Scholar 

  • Vivien M, Peyrot-Clausade M. (1974) A comparative study of the feeding behaviour of three coral reef fishes (Holocentridae), with special reference to the polychaetes of the reef cryptofauna as prey. In: Proceedings of the 2nd international coral reef symposium brisbane, (pp 179–192)

  • Vytopil E, Willis BL (2001) Epifaunal community structure in Acropora spp. (Scleractinia) on the great barrier reef: implications of coral morphology and habitat complexity. Coral Reefs 20:281–288

    Google Scholar 

  • Vyverberg K, Dechnik B, Dutton A, Webster JM, Zwartz D, Portell RW (2018) Episodic reef growth in the granitic Seychelles during the Last Interglacial: implications for polar ice sheet dynamics. Mar Geol 399:170–187

    Google Scholar 

  • Wainwright PC, Bellwood DR, Westneat MW (2002) Ecomorphology of locomotion in labrid fishes. Environ Biol Fish 65:47–62

    Google Scholar 

  • Walker SJ, Degnan BM, Hooper JNA, Skilleter GA (2008) Will increased storm disturbance affect the biodiversity of intertidal, nonscleractinian sessile fauna on coral reefs? Global Change Biol 14:2755–2770

    Google Scholar 

  • Wangpraseurt D, You S, Azam F, Jacucci G, Gaidarenko O, Hildebrand M, Kuhl M, Smith AG, Davey MP, Smith A (2019) Bionic 3D printed corals. BioRxiv 11(1):834051

    Google Scholar 

  • Wantiez L, Chateau O, Le Mouellic S (2006) Initial and mid-term impacts of cyclone Erica on coral reef fish communities and habitat in the South Lagoon Marine Park of New Caledonia. J Mar Biol Assoc Uk 86:1229–1236

    Google Scholar 

  • Ward-Paige CA, Risk MJ, Sherwood OA, Jaap WC (2005) Clionid sponge surveys on the Florida Reef Tract suggest land-based nutrient inputs. Mar Pollut Bull 51:570–579

    CAS  PubMed  Google Scholar 

  • Wen CKC, Pratchett MS, Almany GR, Jones GP (2013) Role of prey availability in microhabitat preferences of juvenile coral trout (Plectropomus: Serranidae). J Exp Mar Biol Ecol 443:39–45

    Google Scholar 

  • White KN (2012) Seasonal variation in sub-tropical Leucothoidae (Crustacea: Amphipoda) on Okinawa-jima, Japan. Mar Biodivers 42:453–457

    Google Scholar 

  • White KN, Reimer JD (2012a) Commensal Leucothoidae (Crustacea, Amphipoda) of the Ryukyu Archipelago Japan. Part I: ascidian-dwellers. Zookeys 1636:13–55

    Google Scholar 

  • White KN, Reimer JD (2012b) Commensal Leucothoidae (Crustacea, Amphipoda) of the Ryukyu Archipelago Japan. Part III: coral rubble-dwellers. Zookeys 173:11–50

    Google Scholar 

  • White KN, Reimer JD, Lorion J (2016) Preliminary analyses reveal strong genetic structure in populations of Leucothoe vulgaris (Crustacea: Amphipoda: Leucothoidae) from Okinawa, Japan. Syst Biodivers 14:55–62

    Google Scholar 

  • Whiteley N (2011) Physiological and ecological responses of crustaceans to ocean acidification. Mar Ecol Prog Ser 430:257–271

    CAS  Google Scholar 

  • Wilkes AA, Cook MM, DiGirolamo AL, Eme J, Grim JM, Hohmann BC, Conner SL, McGill CJ, Pomory CM, Bennett WA (2008) A comparison of damselfish densities on live staghorn coral (Acropora cervicornis) and coral rubble in Dry Tortugas National Park. Southeast Nat 7:483–492

    Google Scholar 

  • Wilkinson CC (1980) Cyanobacteria symbiotic in marine sponges. In: Schenk HEA (ed) Schwemm]er W. Endocytobiology. Walter de Gruyter, pp 553–563

    Google Scholar 

  • Williams DM, Hatcher AI (1983) Structure of fish communities on outer slopes of inshore, mid-shelf and outer shelf reefs of the great barrier reef. Mar Ecol Prog Ser 10:239–250

    Google Scholar 

  • Williams GJ, Graham NAJ, Jouffray JB, Norstrom AV, Nystrom M, Gove JM, Heenan A, Wedding LM (2019a) Coral reef ecology in the Anthropocene. Funct Ecol 33:1014–1022

    Google Scholar 

  • Williams SL, Sur C, Janetski N, Hollarsmith JA, Rapi S, Barron L, Heatwole SJ, Yusuf AM, Yusuf S, Jompa J, Mars F (2019b) Large-scale coral reef rehabilitation after blast fishing in Indonesia. Restor Ecol 27:447–456

    Google Scholar 

  • Willis TJ, Anderson MJ (2003) Structure of cryptic reef fish assemblages: relationships with habitat characteristics and predator density. Mar Ecol Prog Ser 257:209–221

    Google Scholar 

  • Wilmes JC, Schultz DJ, Hoey AS, Messmer V, Pratchett MS (2020) Habitat associations of settlement-stage crown-of-thorns starfish on Australia’s great barrier reef. Coral Reefs 39(4):1163–1164

    Google Scholar 

  • Wilson SK (2001) Multiscale habitat associations of detrivorous blennies (Blenniidae : Salariini). Coral Reefs 20:245–251

    Google Scholar 

  • Wilson SK, Graham NAJ, Pratchett MS, Jones GP, Polunin NVC (2006) Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Global Change Biol 12:2220–2234

    Google Scholar 

  • Wilson SK, Dolman AM, Cheal AJ, Emslie MJ, Pratchett MS, Sweatman HPA (2009) Maintenance of fish diversity on disturbed coral reefs. Coral Reefs 28:3–14

    Google Scholar 

  • Wilson SK, Graham NAJ, Pratchett MS (2014) Susceptibility of butterflyfish to habitat disturbance: do ‘chaets’’ ever prosper?’ In: Pratchett MS, Berumen ML, Kapoor BG (eds) Biology of Butterflyfishes. CRC Press, pp 226–245

    Google Scholar 

  • Winston JE (1986) An annotated checklist of coral-associated bryozoans. American museum of natural history

    Google Scholar 

  • Winston JE, Jackson JBC (1984) Ecology of cryptic coral reef communities.4. community development and life histories of encrusting cheilostome Bryozoa. J Exp Mar Biol Ecol 76:1–21

    Google Scholar 

  • Winterbottom R, Erdmann MV (2018) Two new species of blue-eyed Trimma (Pisces; Gobiidae) from New Guinea. Zootaxa 4444:471–483

    PubMed  Google Scholar 

  • Wolf AT, Nugues MM, Wild C (2014) Distribution, food preference, and trophic position of the corallivorous fireworm Hermodice carunculata in a Caribbean coral reef. Coral Reefs 33:1153–1163

    Google Scholar 

  • Wolfe K, Byrne M (2017) Biology and ecology of the vulnerable holothuroid, Stichopus herrmanni, on a high-latitude coral reef on the great barrier reef. Coral Reefs 36:1143–1156

    Google Scholar 

  • Wolfe K, Davey M (2020) Localised high-density population of a sea cucumber on a Malaysian coral reef. Coral Reefs 39:33–38

    Google Scholar 

  • Wolfe K, Mumby PJ (2020) RUbble biodiversity samplers (RUBS): 3D-printed coral models to standardise biodiversity censuses. Methods Ecol Evol 11(11):1395–1400

    Google Scholar 

  • Wolfe K, Anthony K, Babcock R, Bay L, Bourne D, Burrows D, Byrne M, Deaker D, Diaz-Pulido G, Frade P, Gonzalez-Rivero M, Hoey A, Hoogenboom M, McCormick M, Ortiz J-C, Razak T, Richardson A, Roff G, Sheppard-Brennand H, Stella J, Thompson A, Watson S-A, Webster N, Audas D, Beeden R, Carver J, Cowlishaw M, Dyer M, Groves P, Horne D, Thiault L, Vains J, Wachenfeld D, Weekers D, Williams G, Mumby PJ (2020a) Priority species to support the functional integrity of coral reefs. Oceanogr Mar Biol Annu Rev 58:179–318

    Google Scholar 

  • Wolfe K, Desbiens A, Stella J, Mumby PJ (2020b) Length–weight relationships to quantify biomass for motile coral reef cryptofauna. Coral Reefs 36(2):1649–1660

    Google Scholar 

  • Wolff NH, Mumby PJ, Devlin M, Anthony KRN (2018) Vulnerability of the Great Barrier Reef to climate change and local pressures. Global Change Biol 24:1978–1991

    Google Scholar 

  • Wong E, Hutchings P (2015) New records of Pectinariidae (Polychaeta) from Lizard Island, Great Barrier Reef, Australia and the description of two new species. Zootaxa 4019:733–744

    PubMed  Google Scholar 

  • Woodhead AJ, Hicks CC, Norstrom AV, Williams GJ, Graham NAJ (2019) Coral reef ecosystem services in the Anthropocene. Funct Ecol 33:1023–1034

    Google Scholar 

  • Woodley JD, Chornesky EA, Clifford PA, Jackson JBC, Kaufman LS, Knowlton N, Lang JC, Pearson MP, Porter JW, Rooney MC, Rylaarsdam KW, Tunnicliffe VJ, Wahle CM, Wulff JL, Curtis ASG, Dallmeyer MD, Jupp BP, Koehl MAR, Neigel J, Sides EM (1981) Hurricane Allens impact on Jamaican coral reefs. Science 214:749–755

    CAS  PubMed  Google Scholar 

  • Woolsey E, Bainbridge SJ, Kingsford MJ, Byrne M (2012) Impacts of cyclone Hamish at one tree reef: integrating environmental and benthic habitat data. Mar Biol 159:793–803

    Google Scholar 

  • Wulff JL (1984) Sponge-mediated coral reef growth and rejuvenation. Coral Reefs 3:157–163

    Google Scholar 

  • Wulff JL (1997) Mutualisms among species of coral reef sponges. Ecology 78:146–159

    Google Scholar 

  • Wulff J (2001) Assessing and monitoring coral reef sponges: Why and how? B Mar Sci 69:831–846

    Google Scholar 

  • Wulff JL (2006) Ecological interactions of marine sponges. Can J Zool 84:146–166

    Google Scholar 

  • Wulff JL (2008) Life-history differences among coral reef sponges promote mutualism or exploitation of mutualism by influencing partner fidelity feedback. Am Nat 171:597–609

    PubMed  Google Scholar 

  • Wulff J (2016) Sponge contributions to the geology and biology of reefs: past, present, and future. Coral Reefs Crossroads 6:103–126

    Google Scholar 

  • Wulff JL, Buss LW (1979) Do sponges help hold coral reefs together. Nature 281:474–475

    Google Scholar 

  • Yadav S, Rathod P, Alcoverro T, Arthur R (2016) “Choice” and destiny: the substrate composition and mechanical stability of settlement structures can mediate coral recruit fate in post-bleached reefs. Coral Reefs 35:211–222

    Google Scholar 

  • Yahya SAS, Gullstrom M, Ohman MC, Jiddawi NS, Andersson MH, Mgaya YD, Lindahl U (2011) Coral bleaching and habitat effects on colonisation of reef fish assemblages: an experimental study. Estuar Coast Shelf S 94:16–23

    Google Scholar 

  • Yokochi H, Ogura M (1987) Spawning period and discovery of juvenile Acanthaster planci (L.)(Echinodermata: Asteroidea) at northwestern Iriomote-jima. Ryukyu Islands B Mar Sci 41:611–616

    Google Scholar 

  • Young MAL, Bellwood DR (2012) Fish predation on sea urchins on the Great Barrier Reef. Coral Reefs 31:731–738

    Google Scholar 

  • Zankl H (1993) The origin of high-Mg-calcite microbialites in cryptic habitats of Caribbean coral reefs—their dependence on light and turbulence. Facies 29:55–59

    Google Scholar 

  • Zann L, Brodie J, Berryman C, Naqasima M (1987) Recruitment, ecology, growth and behavior of juvenile Acanthaster planci (L.)(Echinodermata: Asteroidea). B Mar Sci 41:561–575

    Google Scholar 

  • Zea S (1994) Patterns of coral and sponge abundance in stressed coral reefs at Santa Marta, Colombian Caribbean. Sponges Time Space, 257–264

  • Ziegenhorn MA (2016) Best dressed test: A study of the covering behavior of the collector urchin Tripneustes gratilla. PLoS ONE 11:e0153581

    PubMed  PubMed Central  Google Scholar 

  • Zimmerman TL, Martin JW (2004) Artificial reef matrix structures (ARMS): an inexpensive and effective method for collecting coral reef-associated invertebrates. Gulf Caribbean Res 16:59–64

    Google Scholar 

  • Zinke J, Gilmour JP, Fisher R, Puotinen M, Maina J, Darling E, Stat M, Richards ZT, McClanahan TR, Beger M, Moore C, Graham NAJ, Feng M, Hobbs JPA, Evans SN, Field S, Shedrawi G, Babcock RC, Wilson SK (2018) Gradients of disturbance and environmental conditions shape coral community structure for south-eastern Indian Ocean reefs. Divers Distrib 24:605–620

    Google Scholar 

  • Zubia M, Peyrot-Clausade M (2001) Internal bioerosion of Acropora formosa in Reunion (Indian Ocean): microborer and macroborer activities. Oceanol Acta 24:251–262

    Google Scholar 

Download references

Acknowledgements

On behalf of all authors, the corresponding author states that there is no conflict of interest. We sincerely thank our reviewers for their insightful comments that greatly improved this manuscript. This study was funded by ARC grants to PJM. Symbols for diagrams modified courtesy of the Integration and Application Network (ian.umces.edu/symbols).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kennedy Wolfe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic Editor Morgan S. Pratchett

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolfe, K., Kenyon, T.M. & Mumby, P.J. The biology and ecology of coral rubble and implications for the future of coral reefs. Coral Reefs 40, 1769–1806 (2021). https://doi.org/10.1007/s00338-021-02185-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-021-02185-9

Keywords

Navigation