Skip to main content
Log in

Growth regulating properties of isoprene and isoprenoid-based essential oils

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Essential oils have growth regulating properties comparable to the well-documented methyl jasmonate and may be involved in localized and/or airborne plant communication.

Abstract

Aromatic plants employ large amounts of resources to produce essential oils. Some essential oils are known to contain compounds with plant growth regulating activities. However, the potential capacity of essential oils as airborne molecules able to modulate plant growth/development has remained uninvestigated. Here, we demonstrate that essential oils from eight taxonomically diverse plants applied in their airborne state inhibited auxin-induced elongation of Pisum sativum hypocotyls and Avena sativa coleoptiles. This response was also observed using five monoterpenes commonly found in essential oils as well as isoprene, the basic building block of terpenes. Upon transfer to ambient conditions, A. sativa coleoptiles resumed elongation, demonstrating an antagonistic relationship rather than toxicity. Inclusion of essential oils, monoterpenes, or isoprene into the headspace of culture vessels induced abnormal cellular growth along hypocotyls of Arabidopsis thaliana. These responses were also elicited by methyl jasmonate (MeJA); however, where methyl jasmonate inhibited root growth essential oils did not. Gene expression studies in A. thaliana also demonstrated differences between the MeJA and isoprenoid responses. This series of experiments clearly demonstrate that essential oils and their isoprenoid components interact with endogenous plant growth regulators when applied directly or as volatile components in the headspace. The similarities between isoprenoid and MeJA responses suggest that they may act in plant defence signalling. While further studies are needed to determine the ecological and evolutionary significance, the results of this study and the specialized anatomy associated with aromatic plants suggest that essential oils may act as airborne signalling molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdelgadir HA, Johnson SD, Van Staden J (2009) Promoting branching of a potential biofuel crop Jatropha curcas L. by foliar application of plant growth regulators. Plant Growth Regul 58:287–295

    Article  CAS  Google Scholar 

  • Baldwin IT, Schultz JC (1983) Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants. Science 221:277–279

    Article  PubMed  CAS  Google Scholar 

  • Başer KHC, Demirci B (2007) Studies on Betula essential oils. Arkivoc 7:335–348

    Google Scholar 

  • Burström H (1950) Studies on growth and metabolism of roots. IV. Positive and negative auxin effects on cell elongation. Physiol Plant 3:277–292

    Article  Google Scholar 

  • Chen Q, Sun J, Zhai Q, Zhou W, Qi L, Xu L, Wang B, Chen R, Jiang H, Gi J et al (2011) The basic helix–loop–helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis. Plant Cell 23:3335–3352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Consales F, Schweizer F, Erb M et al (2012) Insect oral secretions suppress wound-induced responses in Arabidopsis. J Exp Bot 63:727–737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demole E, Lederer E, Mercier D (1962) Isolement et détermination de la structure du jasmonate de méthyle, constituant odorant caractéristique de l’essence de jasmin. Helv Chim Acta 45:675–685

    Article  CAS  Google Scholar 

  • Dun EA, Ferguson BJ, Beveridge CA (2006) Apical dominance and shoot branching. Divergent opinions or divergent mechanisms? Plant Physiol 142:812–819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edey JM, Byth DE (1970) The influence of 2, 3, 5-triiodobenzoic acid (TIBA) on vegetative and reproductive growth of legumes. Anim Prod Sci 10:732–738

    Article  CAS  Google Scholar 

  • Farmer EE (2001) Surface-to-air signals. Nature 411:854–856

    Article  PubMed  CAS  Google Scholar 

  • Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci 87:7713–7716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Godard K-A, White R, Bohlmann J (2008) Monoterpene-induced molecular responses in Arabidopsis thaliana. Phytochemistry 69:1838–1849

    Article  PubMed  CAS  Google Scholar 

  • Heil M, Karban R (2010) Explaining evolution of plant communication by airborne signals. Trends Ecol Evol 25:137–144

    Article  PubMed  Google Scholar 

  • Heil M, Silva Bueno JC (2007) From the Cover: within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Sci Signal 104:5467

    CAS  Google Scholar 

  • Ishizaki S, Shiojiri K, Karban R, Ohara M (2011) Effect of genetic relatedness on volatile communication of sagebrush (Artemisia tridentata). J Plant Interactions 6:193

    Article  CAS  Google Scholar 

  • Jones AMP, Klun JA, Cantrell CL et al (2012) Isolation and identification of mosquito (Aedes aegypti) biting deterrent fatty acids from male inflorescences of breadfruit (Artocarpus altilis (Parkinson) Fosberg). J Agric Food Chem 60:3867–3873

    Article  PubMed  CAS  Google Scholar 

  • Karban R (2008) Plant behaviour and communication. Ecol Lett 11:727–739. doi:10.1111/j.1461-0248.2008.01183.x

    Article  PubMed  Google Scholar 

  • Karban R, Baldwin IT, Baxter KJ et al (2000) Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125:66–71

    Article  Google Scholar 

  • Karban R, Shiojiri K, Ishizaki S, Wetzel WC, Evans RY (2013) Kin recognition affects plant communication and defence. Proc R Soc B Biol, Sci 280

    Google Scholar 

  • Kim S-H, Arnold D, Lloyd A, Roux SJ (2001) Antisense expression of an Arabidopsis ran binding protein renders transgenic roots hypersensitive to auxin and alters auxin-induced root growth and development by arresting mitotic progress. Plant Cell Online 13:2619–2630

    Article  CAS  Google Scholar 

  • Lindigkeit R, Biller A, Buch M, Schiebel HM, Boppre M, Hartmann T (1997) The two faces of pyrrolizidine alkaloids: the role of the tertiary amine and its N-oxide in chemical defense of insects with acquired plant alkaloids. Eur J Biochem 245:626–636

    Article  PubMed  CAS  Google Scholar 

  • Little DB, Croteau RB (1999) Biochemistry of essential oil terpenes. Flavor chemistry. Springer, New York, pp 239–253

    Google Scholar 

  • Machado RA, Ferrieri AP, Robert CA, Glauser G, Kallenbach M, Baldwin IT, Erb M (2013) Leaf-herbivore attack reduces carbon reserves and regrowth from the roots via jasmonate and auxin signaling. New Phytol 200:1234–1246

    Article  PubMed  CAS  Google Scholar 

  • MacRae E (2007) Extraction of plant RNA. Protocols for nucleic acid analysis by nonradioactive probes. Springer, New York, pp 15–24

    Book  Google Scholar 

  • Mao W, Rupasinghe S, Zangerl AR, Schuler MA, Berenbaum MR (2006) Remarkable substrate-specificity of CYP6AB3 in Depressaria pastinacella a highly specialized caterpillar. Insect Mol Biol 15:169–179

    Article  PubMed  CAS  Google Scholar 

  • McNair JB (1932) The interrelation between substances in plants: essential oils and resins, cyanogen and oxalate. Am J Bot 19:255–272

    Article  CAS  Google Scholar 

  • Miller CO (1954) The influence of cobalt and sugars upon the elongation of etiolated pea stem segments. Plant Physiol 29:79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moloney MM, Elliott MC, Cleland RE (1981) Acid growth effects in maize roots: evidence for a link between auxin-economy and proton extrusion in the control of root growth. Planta 152:285–291

    Article  PubMed  CAS  Google Scholar 

  • Murch SJ, Rupasinghe HP, Saxena PK (2002) An in vitro and hydroponic growing system for hypericin, pseudohypericin, and hyperforin production of St. John’s wort (Hypericum perforatum CV new stem). Planta Med 68:1108

    Article  PubMed  CAS  Google Scholar 

  • Navarro L, Dunoyer P, Jay F et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Sci Signal 312:436

    CAS  Google Scholar 

  • Noodén LD, Thimann KV (1963) Evidence for a requirement for protein synthesis for auxin-induced cell enlargement. Proc Natl Acad Sci USA 50:194

    Article  PubMed  PubMed Central  Google Scholar 

  • Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243

    Article  PubMed  CAS  Google Scholar 

  • Preston CA, Laue G, Baldwin IT (2004) Plant–plant signaling: application of trans-or cis-methyl jasmonate equivalent to sagebrush releases does not elicit direct defenses in native tobacco. J Chem Ecol 30:2193–2214

    Article  PubMed  CAS  Google Scholar 

  • Salinas J, Sánchez-Serrano JJ (2006) Arabidopsis protocols. Springer, New York

    Google Scholar 

  • Schwachtje J, Baldwin IT (2008) Why does herbivore attack reconfigure primary metabolism? Plant Physiol 146:845–851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scott TK (1972) Auxins and roots. Annu Rev Plant Physiol 23:235–258

    Article  CAS  Google Scholar 

  • Sharkey TD, Wiberley AE, Donohue AR (2008) Isoprene emission from plants: why and how. Ann Bot 101:5–18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shukla MR, Jones AMP, Sullivan JA et al (2012) In vitro conservation of American elm (Ulmus americana): potential role of auxin metabolism in sustained plant proliferation. Can J For Res 42:686–697

    Article  CAS  Google Scholar 

  • Shulaev V, Silverman P, Raskin I (1997) Airborne signaling by methyl salicylate in plant pathogen resistance. Nature 385:718–721. doi:10.1038/385718a0

    Article  CAS  Google Scholar 

  • Sirois JC (1966) Studies on growth regulators. I. Improved Avena coleoptile elongation test for auxin. Plant Physiol 41:1308–1312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strauss SY, Agrawal AA (1999) The ecology and evolution of plant tolerance to herbivory. Trends Ecol Evol 14:179–185

    Article  PubMed  Google Scholar 

  • Svoboda KP, Svoboda TG, Syred AD, Syred PM (2000) Secretory structures of aromatic and medicinal plants: a review and atlas of micrographs. Microscopix Publications, London

    Google Scholar 

  • Tanimoto E (2005) Regulation of root growth by plant hormones—roles for auxin and gibberellin. Crit Rev Plant Sci 24:249–265

    Article  CAS  Google Scholar 

  • Tanimoto E, Watanabe J (1986) Automated recording of lettuce root elongation as affected by auxin and acid pH in a new rhizometer with minimum mechanical contact to roots. Plant Cell Physiol 27:1475–1487

    CAS  Google Scholar 

  • Terry GM, Stokes NJ, Hewitt CN, Mansfield TA (1995) Exposure to isoprene promotes flowering in plants. J Exp Bot 46:1629–1631

    Article  CAS  Google Scholar 

  • Tiffin P (2000) Mechanisms of tolerance to herbivory damage: what do we know? Evol Ecol 14:523–536

    Article  Google Scholar 

  • Tiryaki I, Staswick PE (2002) An Arabidopsis mutant defective in jasmonate response is allelic to the auxin-signaling mutant axr1. Plant Physiol 130:887–894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ueda J, Miyamoto K, Aoki M (1994) Jasmonic acid inhibits the IAA-induced elongation of oat coleoptile segments: a possible mechanism involving the metabolism of cell wall polysaccharides. Plant Cell Physiol 35:1065–1070

    CAS  Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Unlu M, Ergene E, Unlu GV et al (2010) Composition, antimicrobial activity and in vitro cytotoxicity of essential oil from Cinnamomum zeylanicum Blume Lauraceae. Food Chem Toxicol 48:3274–3280

    Article  PubMed  CAS  Google Scholar 

  • Van Overbeek J, Blondeau R, Horne V (1951) Trans-cinnamic acid as an anti-auxin. Am J Bot 38:589–595

    Article  Google Scholar 

  • Wang L, Wu J (2013) The essential role of jasmonic acid in plant-herbivore interactions–using the wild tobacco Nicotiana attenuata as a model. J Genet Genomics 40:597–606

    Article  PubMed  CAS  Google Scholar 

  • Welch BL, McArthur ED (1981) Variation of monoterpenoid content among subspecies and accessions of Artemisia tridentata grown in a uniform garden. J Range Manag 34:380–384

    Article  CAS  Google Scholar 

  • Werker E (1993) Function of essential oil-secreting glandular hairs in aromatic plans of Lamiacea—a review. Flavour Fragr J 8:249–255

    Article  Google Scholar 

  • Yang DJ, Yao J, Mei C-S, Tong X-H, Zeng L-J, Li Q, Xiao L-T, Sun T, Li J, Deng X-W et al (2012) Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc Nat Acad Sci USA 109:E1192–E1200

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the Gosling foundation and the National Science and Engineering Research Council for supporting this work. Additionally, the authors acknowledge the contributions of Dr. Jaideep Mathur, Abhishek Chattopadhyay, and Shuping Li for their assistance in various aspects of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen K. Saxena.

Ethics declarations

Conflict of interest

The authors have no competing interests.

Additional information

Communicated by A. Dhingra.

A. M. P. Jones and M. R. Shukla contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2060 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, A.M.P., Shukla, M.R., Sherif, S.M. et al. Growth regulating properties of isoprene and isoprenoid-based essential oils. Plant Cell Rep 35, 91–102 (2016). https://doi.org/10.1007/s00299-015-1870-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1870-1

Keywords

Navigation