Skip to main content
Log in

Plastid-expressed choline monooxygenase gene improves salt and drought tolerance through accumulation of glycine betaine in tobacco

  • Biotic and Abiotic Stress
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Glycine betaine (GlyBet), a quaternary ammonium compound, functions as an osmoprotectant in many organisms including plants. Previous research has shown that over-expression of enzymes for GlyBet biosynthesis in transgenic plants improved abiotic stress tolerance, but so far no study on the effects of plastid-expression of choline monooxygenase, the enzyme that catalyzes the conversion of choline into betaine aldehyde, has been reported. In the present study, tobacco (Nicotiana tabacum L. cv Wisconsin 38) plants were transformed with a gene for choline monooxygenase (BvCMO) from beet (Beta vulgaris) via plastid genetic engineering. Transplastomic plants constitutively expressing BvCMO under the control of the ribosomal RNA operon promoter and a synthetic T7 gene G10 leader were able to accumulate GlyBet in leaves, roots and seeds, and exhibited improved tolerance to toxic level of choline and to salt/drought stress when compared to wild type plants. Transplastomic plants also demonstrated higher net photosynthetic rate and apparent quantum yield of photosynthesis in the presence of 150 mM NaCl. Salt stress caused no significant change on the maximal efficiency of PSII photochemistry (Fv/Fm) in both wild type and transplastomic plants, but a decrease in the actual efficiency of PSII (ΦPSII) was observed, and such a decrease was much greater in wild type plants. Our results demonstrate the feasibility of improving salt and drought tolerance in plants through plastid transformation with BvCMO gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andresen PA, Kaasen I, Styrvold OB, Boulnois G, Strom AR (1988) Molecular cloning, physical mapping and expression of the bet genes governing the osmoregulatory choline-glycine betaine pathway of Escherichia coli. J Gen Microbiol 134:1737–1746

    PubMed  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    PubMed  CAS  Google Scholar 

  • Bessieres MA, Gibon Y, Lefeuvre JC, Larher F (1999) A single-step purification for glycine betaine determination in plant extracts by isocratic HPLC. J Agric Food Chem 47:3718–3722

    Article  PubMed  CAS  Google Scholar 

  • Bock R (2001) Transgenic plastid in basic research and plant biotechnology. J Mol Biol 312:425–438

    Article  PubMed  CAS  Google Scholar 

  • Brouquisse R, Weigel P, Rhodes D, Yocum CF, Hanson AD (1989) Evidence for a ferredoxin-dependent choline monooxygenase from spinach chloroplast stroma. Plant Physiol 90:322–329

    Article  PubMed  CAS  Google Scholar 

  • Brugnoli E, Bjorkman O (1992) Chloroplast movements in leaves: influence on chlorophyll fluorescene and measurements of light-induced absorbance changes related to pH and zeaxanthin formation. Photosynth Res 32:23–35

    Article  CAS  Google Scholar 

  • Chen TH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Dhingra A (2002) Multigene engineering: dawn of an exciting new era in biotechnology. Curr Opin Biotechnol 13:136–141

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16:345–348

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Khan MS, Allison L (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci 7:84–91

    Article  PubMed  CAS  Google Scholar 

  • DeCosa B, Moar W, Lee SB, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71–74

    Article  CAS  Google Scholar 

  • DeGray G, Rajasekaran K, Smith F, Sanford J, Daniell H (2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127:852–862

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: Version II. Plant Mol Biol Rep 1:19

    Article  CAS  Google Scholar 

  • Gorham J (1995) Betaines in higher plants-biosynthesis and role in stress metabolism. In: Wallsgrove RM (ed) Amino acids and their derivatives in higher plants. Cambridge University Press, Cambridge, pp 171–203

    Google Scholar 

  • Hamada T, Kodama H, Nishimura M, Iba K (1996) Modification of fatty acid composition by over- and antisense-expression of a microsomal ω-3 fatty acid desaturase gene in transgenic tobacco. Transgenic Res 5:115–121

    Article  PubMed  CAS  Google Scholar 

  • Hanson AD, May AM, Grumet R, Bode J, Jamieson GC, Rhodes D (1985) Betaine synthesis in Chenopods: localization in chloroplast. Proc Natl Acad Sci USA 82:3678–3682

    Article  PubMed  CAS  Google Scholar 

  • Hayashi H, Alia Mustardy L, Deshnium P, Ida M, Murata N (1997) Transformation of Arabidopsis thaliana with the codA gene for choline oxidase: accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J 12:133–142

    Article  PubMed  CAS  Google Scholar 

  • Hibino T, Waditee R, Araki E, Ishikawa H, Aoki K, Tanaka Y, Takabe T (2002) Functional characterization of choline monooxygenase, an enzyme for betaine synthesis in plants. J Biol Chem 277:41352–41360

    Article  PubMed  CAS  Google Scholar 

  • Holmstrom KO, Welin B, Mandal A, Kristiansdottir I, Teeri TH, Lamark T, Strom AR, Palva ET (1994) Production of Escherichia coli betaine-aldehyde dehydrogenase, an enzyme required for the synthesis of the osmoporotectant glycine betaine, in transgenic plants. Plant J 6:749–758

    Article  PubMed  CAS  Google Scholar 

  • Holmstrom KO, Somersalo S, Mandal A, Palva TE, Welin B (2000) Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot 51:177–185

    Article  PubMed  CAS  Google Scholar 

  • Ikuta S, Mamura S, Misaki H, Horiuti Y (1977) Purification and characterization of choline oxidase from Arthrobacter globiformis. J Biochem 82:1741–1749

    PubMed  CAS  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004) Plastid expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots and leaves confers enhanced salt tolerance. Plant Physiol 136:2843–2854

    Article  PubMed  CAS  Google Scholar 

  • Lamark T, Kaasen I, Eshoo MW, Falkenberg P, McDougall J, Strom AR (1991) DNA sequence and analysis of the bet genes encoding the osmoregulatory choline-glycine betaine pathway of Escherichia coli. Mol Microbiol 5:1049–1064

    Article  PubMed  CAS  Google Scholar 

  • Landfald B, Strom AR (1986) Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. J Bacteriol 165:849–855

    PubMed  CAS  Google Scholar 

  • Lee SB, Kwon HB, Kwon SJ, Park SC, Jeong MJ, Han SE, Byun MO, Daniell H (2003) Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol Breed 11:1–13

    Article  CAS  Google Scholar 

  • Lilius G, Holmberg N, Bulow L (1996) Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. Biotechnology 14:177–180

    Article  CAS  Google Scholar 

  • Luo D, Niu X, Wang Y, Zheng W, Chang L, Wang Q, Wei X, Yu G, Lu BR, Liu Y (2007) Functional defect at the rice choline monooxygenase locus from an unusual post-transcriptional processing is associated with the sequence elements of short-direct repeats. New phytol 175:439–447

    Article  PubMed  CAS  Google Scholar 

  • Lv S, Yang A, Zhang K, Wang L, Zhang J (2007) Increase of glycinebetaine synthesis improves drought tolerance in cotton. Mol Breed 20:233–248

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Niu X, Zheng W, Lu BR, Ren G, Huang W, Wang S, Liu J, Tang Z, Luo D, Wang Y, Liu Y (2007) An unusual posttranscriptional processing in two betaine aldhyde dehydrogenase loci of cereal crops directed by short, direct repeats in response to stress conditions. Plant physiol 143:1929–1942

    Article  PubMed  CAS  Google Scholar 

  • Nuccio ML, Russell BL, Nolte KD, Rathinasabapathi B, Gage DA, Hanson AD (1998) The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase. Plant J 16:487–496

    Article  PubMed  CAS  Google Scholar 

  • Nuccio ML, McNeil SD, Ziemak MJ, Hanson AD, Jain RK, Selvaraj G (2000) Choline import into chloroplasts limits glycine betaine synthesis in tobacco: analysis of plants engineered with a chloroplastic or a cytosolic pathway. Metab Eng 2:300–311

    Article  PubMed  CAS  Google Scholar 

  • Park EJ, Jeknic Z, Sakamoto A, DeNoma J, Yuwansiri R, Murata N, Chen THH (2004) Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. Plant J 40:474–487

    Article  PubMed  CAS  Google Scholar 

  • Park EJ, Jeknic Z, Pino MT, Murata N, Chen THH (2007) Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress. Plant Cell Environ 30:994–1005

    Article  PubMed  CAS  Google Scholar 

  • Quan R, Shang M, Zhang H, Zhao Y, Zhang J (2004) Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol J 2:477–486

    Article  PubMed  CAS  Google Scholar 

  • Rathinasabapathi B, McCue KF, Gage DA, Hanson AD (1994) Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenase lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance. Planta 193:155–162

    Article  PubMed  CAS  Google Scholar 

  • Rathinasabapathi B, Burnet M, Russell BL, Gage DA, Liao PC, Nye GJ, Scott P, Golbeck JH, Hanson AD (1997) Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: prosthetic group characterization and cDNA cloning. Proc Natl Acad Sci USA 94:3454–3458

    Article  PubMed  CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol 44:357–384

    Article  CAS  Google Scholar 

  • Rhodes D, Rich PJ, Brunk DG, Rhodes JC, Pauly MH, Hansen LA (1989) Development of two isogenic sweet corn hybrids differing for glycinebetaine content. Plant Physiol 91:1112–1121

    PubMed  CAS  Google Scholar 

  • Robinson SP, Jones GP (1986) Accumulation of glycinebetaine in chloroplasts provides osmotic adjustment during salt stress. Aust J Plant Physiol 13:659–668

    CAS  Google Scholar 

  • Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids: foreign protein expression in fruit. Nat Biotechnol 19:870–875

    Article  PubMed  CAS  Google Scholar 

  • Ruiz ON, Hussein H, Terry N, Daniell H (2003) Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol 132:1344–1352

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Murata N (2000) Genetic engineering of glycinebetaine synthesis in plants: current status and implication for enhancement of stress tolerance. J Exp Bot 51:81–88

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Valverde R, Alia, Chen THH, Murata N (2000) Transformation of Arabidopsis with the codA gene for choline oxidase enhances freezing tolerance of plants. Plant J 22:449–453

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, vol 1–3, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Shen YG, Du BX, Zhang WK, Zhang JS, Chen SY (2002) AhCMO, regulated by stress in Atriplex hortensis, can improve drought tolerance in transgenic tobacco. Theor Appl Genet 105:815–821

    Article  PubMed  CAS  Google Scholar 

  • Shirasawa K, Takabe T, Takabe T, Kishitani S (2006) Accumulation of glycinebetaine in rice plants that overexpress choline monooxygenase from spinach and evaluation of their tolerance to abiotic stress. Ann Bot 98:565–571

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Maliga P (1993) High frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87:8526–8530

    Article  PubMed  CAS  Google Scholar 

  • Weigel P, Weretilnyk EA, Hanson AD (1986) Betaine aldehyde oxidation by spinach chloroplasts. Plant Physiol 82:753–759

    PubMed  CAS  Google Scholar 

  • Weretilnyk EA, Hanson AD (1990) Molecular cloning of a plant betaine-aldhyde dehydrogenase, an enzyme implicated in adaptation to salinity and drought. Proc Natl Acad Sci USA 87:2745–2749

    Article  PubMed  CAS  Google Scholar 

  • Wurbs D, Ruf S, Bock R (2007) Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J 49:276–288

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Liang Z, Wen X, Lu C (2008) Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol 66:73–86

    Article  PubMed  CAS  Google Scholar 

  • Ye GN, Hajdukiewicz PT, Broyles D, Rodriguez D, Xu CW, Nehra N, Staub JM (2001) Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco. Plant J 25:261–270

    Article  PubMed  CAS  Google Scholar 

  • Zoubenko OV, Allison LA, Svab Z, Maliga P (1994) Efficient targeting of foreign genes into the tobacco plastid genome. Nucleic Acids Res 22:3819–3824

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor D.B Zhang (Shanghai Jiao Tong University) for providing tobacco Wisconsin 38 seeds. This work was supported by the following grants: Program for Changjiang Scholars and Innovative Research Team in University (Grand No.IRT0635); National Basic Research Program of China (Grant No. 2006CB100106); National Natural Science Foundation of China (NSFC 30571196; 30471411). The ministry of Science and Technology of China (Grant No.: 2007AA10Z187).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Xia Zhang.

Additional information

Communicated by J. Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Tan, W., Yang, XH. et al. Plastid-expressed choline monooxygenase gene improves salt and drought tolerance through accumulation of glycine betaine in tobacco. Plant Cell Rep 27, 1113–1124 (2008). https://doi.org/10.1007/s00299-008-0549-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-008-0549-2

Keywords

Navigation