Skip to main content
Log in

Regulation of conidiation in Botrytis cinerea involves the light-responsive transcriptional regulators BcLTF3 and BcREG1

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Botrytis cinerea is a plant pathogenic fungus with a broad host range. Due to its rapid growth and reproduction by asexual spores (conidia), which increases the inoculum pressure, the fungus is a serious problem in different fields of agriculture. The formation of the conidia is promoted by light, whereas the formation of sclerotia as survival structures occurs in its absence. Based on this observation, putative transcription factors (TFs) whose expression is induced upon light exposure have been considered as candidates for activating conidiation and/or repressing sclerotial development. Previous studies reported on the identification of six light-responsive TFs (LTFs), and two of them have been confirmed as crucial developmental regulators: BcLTF2 is the positive regulator of conidiation, whose expression is negatively regulated by BcLTF1. Here, the functional characterization of the four remaining LTFs is reported. BcLTF3 has a dual function, as it represses conidiophore development by repressing bcltf2 in light and darkness, and is moreover essential for conidiogenesis. In bcltf3 deletion mutants conidium initials grow out to hyphae, which develop secondary conidiophores. In contrast, no obvious functions could be assigned to BcLTF4, BcLTF5 and BcLTF6 in these experiments. BcREG1, previously reported to be required for virulence and conidiogenesis, has been re-identified as light-responsive transcriptional regulator. Studies with bcreg1 overexpression strains indicated that BcREG1 differentially affects conidiation by acting as a repressor of BcLTF2-induced conidiation in the light and as an activator of a BcLTF2-independent conidiation program in the dark.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams TH, Boylan MT, Timberlake WE (1988) brlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans. Cell 54:353–362

  • Alkahyyat F, Ni M, Kim SC, Yu JH (2015) The WOPR domain protein OsaA orchestrates development in Aspergillus nidulans. PLoS One 10:e0137554. doi:10.1371/journal.pone.0137554

    Article  PubMed  PubMed Central  Google Scholar 

  • Amselem J, Cuomo CA, van Kan JA, Viaud M, Benito EP, Couloux A, Coutinho PM, de Vries RP, Dyer PS, Fillinger S, Fournier E, Gout L, Hahn M, Kohn L, Lapalu N, Plummer KM, Pradier JM, Quevillon E, Sharon A, Simon A, ten Have A, Tudzynski B, Tudzynski P, Wincker P, Andrew M, Anthouard V, Beever RE, Beffa R, Benoit I, Bouzid O, Brault B, Chen Z, Choquer M, Collemare J, Cotton P, Danchin EG, Da Silva C, Gautier A, Giraud C, Giraud T, Gonzalez C, Grossetete S, Guldener U, Henrissat B, Howlett BJ, Kodira C, Kretschmer M, Lappartient A, Leroch M, Levis C, Mauceli E, Neuveglise C, Oeser B, Pearson M, Poulain J, Poussereau N, Quesneville H, Rascle C, Schumacher J, Segurens B, Sexton A, Silva E, Sirven C, Soanes DM, Talbot NJ, Templeton M, Yandava C, Yarden O, Zeng Q, Rollins JA, Lebrun MH, Dickman M (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7:e1002230. doi:10.1371/journal.pgen.1002230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey LA, Ebbole DJ (1998) The fluffy gene of Neurospora crassa encodes a Gal4p-type C6 zinc cluster protein required for conidial development. Genetics 148:1813–1820

  • Bailey-Shrode L, Ebbole DJ (2004) The fluffy gene of Neurospora crassa is necessary and sufficient to induce conidiophore development. Genetics 166:1741–1749

  • Berkey CD, Vyas VK, Carlson M (2004) Nrg1 and Nrg2 transcriptional repressors Are differently regulated in response to carbon source. Eukaryot Cell 3:311–317. doi:10.1128/ec.3.2.311-317.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braga GU, Rangel DE, Fernandes EK, Flint SD, Roberts DW (2015) Molecular and physiological effects of environmental UV radiation on fungal conidia. Curr Genet 61:405–425. doi:10.1007/s00294-015-0483-0

    Article  CAS  PubMed  Google Scholar 

  • Brown DW, Busman M, Proctor RH (2014) Fusarium verticillioides SGE1 is required for full virulence and regulates expression of protein effector and secondary metabolite biosynthetic genes. Mol Plant Microbe Interact 27:809–823. doi:10.1094/MPMI-09-13-0281-R

    Article  CAS  PubMed  Google Scholar 

  • Büttner P, Koch F, Voigt K, Quidde T, Risch S, Blaich R, Bruckner B, Tudzynski P (1994) Variations in ploidy among isolates of Botrytis cinerea: implications for genetic and molecular analyses. Curr Genet 25:445–450

  • Canessa P, Schumacher J, Hevia MA, Tudzynski P, Larrondo LF (2013) Assessing the effects of light on differentiation and virulence of the plant pathogen Botrytis cinerea: characterization of the White Collar Complex. PLoS One 8:e84223. doi:10.1371/journal.pone.0084223

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao H, Huang P, Zhang L, Shi Y, Sun D, Yan Y, Liu X, Dong B, Chen G, Snyder JH, Lin F, Lu J (2016) Characterization of 47 Cys -His zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae. New Phytol. doi:10.1111/nph.13948

    Google Scholar 

  • Cenis JL (1992) Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Res 20:2380

  • Chen CH, Ringelberg CS, Gross RH, Dunlap JC, Loros JJ (2009) Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora. EMBO J 28:1029–1042. doi:10.1038/emboj.2009.54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Xue W, Zhou J, Zhang Z, Wei S, Liu X, Sun X, Wang W, Li S (2016) De-repression of CSP-1 activates adaptive responses to antifungal azoles. Sci Rep 6:19447. doi:10.1038/srep19447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christianson TW, Sikorski RS, Dante M, Shero JH, Hieter P (1992) Multifunctional yeast high-copy-number shuttle vectors. Gene 110:119–122. doi:10.1016/0378-1119(92)90454-W

    Article  CAS  PubMed  Google Scholar 

  • Cohrs KC, Simon A, Viaud M, Schumacher J (2016) Light governs asexual differentiation in the grey mould fungus Botrytis cinerea via the putative transcription factor BcLTF2. Environ Microbiol 18:4068–4086. doi:10.1111/1462-2920.13431

    Article  CAS  PubMed  Google Scholar 

  • Cole GT (1986) Models of cell differentiation in conidial fungi. Microbiol Rev 50:95

  • Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA, Dunlap JC (2006) A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci USA 103:10352–10357. doi:10.1073/pnas.0601456103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalmais B, Schumacher J, Moraga J, P LEP, Tudzynski B, Collado IG, Viaud M (2011) The Botrytis cinerea phytotoxin botcinic acid requires two polyketide synthases for production and has a redundant role in virulence with botrydial. Mol Plant Pathol 12:564–579 doi:10.1111/j.1364-3703.2010.00692.x

  • Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430. doi:10.1111/j.1364-3703.2011.00783.x

    Article  PubMed  Google Scholar 

  • Epton HAS, Richmond DV (1980) Formation, structure and germination of conidia. In: Coley-Smith JR, Verhoeff K, Jarvis WR (eds) The biology of Botrytis. Academic Press, London, pp 41–83

    Google Scholar 

  • Fillinger S, Elad Y (2016) Botrytis—the fungus, the pathogen and its management in agricultural systems. Springer

  • Fischer R, Aguirre J, Herrera-Estrella A, Corrochano LM (2016) The complexity of fungal vision. Microbiol Spectr 410.1128/microbiolspec.FUNK-0020-2016

  • Fuller KK, Loros JJ, Dunlap JC (2015) Fungal photobiology: visible light as a signal for stress, space and time. Current genetics 61:275–288

  • Han KH, Han KY, Yu JH, Chae KS, Jahng KY, Han DM (2001) The nsdD gene encodes a putative GATA-type transcription factor necessary for sexual development of Aspergillus nidulans. Mol Microbiol 41:299–309

  • Han Y, Joosten HJ, Niu W, Zhao Z, Mariano PS, McCalman M, van Kan J, Schaap PJ, Dunaway-Mariano D (2007) Oxaloacetate hydrolase, the C–C bond lyase of oxalate secreting fungi. J Biol Chem 282:9581–9590. doi:10.1074/jbc.M608961200

    Article  CAS  PubMed  Google Scholar 

  • Huang G, Wang H, Chou S, Nie X, Chen J, Liu H (2006) Bistable expression of WOR1, a master regulator of white-opaque switching in Candida albicans. Proc Natl Acad Sci USA 103:12813–12818. doi:10.1073/pnas.0605270103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idnurm A, Verma S, Corrochano LM (2010) A glimpse into the basis of vision in the kingdom Mycota. Fungal Genet Biol 47:881–892. doi:10.1016/j.fgb.2010.04.009

    Article  PubMed  PubMed Central  Google Scholar 

  • Jonkers W, Dong Y, Broz K, Kistler HC (2012) The Wor1-like protein Fgp1 regulates pathogenicity, toxin synthesis and reproduction in the phytopathogenic fungus Fusarium graminearum. PLoS Pathog 8:e1002724. doi:10.1371/journal.ppat.1002724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krijgsheld P, Bleichrodt R, Van Veluw G, Wang F, Müller W, Dijksterhuis J, Wösten H (2013) Development in Aspergillus. Stud Mycol 74:1–29

  • Kumagai T (1988) Photocontrol of fungal development. Photochem Photobiol 47:889–896

  • Lambreghts R, Shi M, Belden WJ, Park D, Henn MR, Galagan JE, Baştürkmen M, Birren BW, Sachs MS, Dunlap JC (2009) A high-density single nucleotide polymorphism map for Neurospora crassa. Genetics 181:767–781

  • Lee MK, Kwon NJ, Choi JM, Lee IS, Jung S, Yu JH (2014) NsdD is a key repressor of asexual development in Aspergillus nidulans. Genetics 197:159–173. doi:10.1534/genetics.114.161430

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee MK, Kwon NJ, Lee IS, Jung S, Kim SC, Yu JH (2016) Negative regulation and developmental competence in Aspergillus. Sci Rep 6:28874. doi:10.1038/srep28874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Su C, Liu H (2014) Candida albicans hyphal initiation and elongation. Trends Microbiol 22:707–714. doi:10.1016/j.tim.2014.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mengiste T (2012) Plant immunity to necrotrophs. Annu Rev Phytopathol 50:267–294

  • Michielse CB, van Wijk R, Reijnen L, Manders EM, Boas S, Olivain C, Alabouvette C, Rep M (2009) The nuclear protein Sge1 of Fusarium oxysporum is required for parasitic growth. PLoS Pathog 5:e1000637. doi:10.1371/journal.ppat.1000637

    Article  PubMed  PubMed Central  Google Scholar 

  • Michielse CB, Becker M, Heller J, Moraga J, Collado IG, Tudzynski P (2011) The Botrytis cinerea Reg1 protein, a putative transcriptional regulator, is required for pathogenicity, conidiogenesis, and the production of secondary metabolites. Mol Plant Microbe Interact 24:1074–1085. doi:10.1094/MPMI-01-11-0007

    Article  CAS  PubMed  Google Scholar 

  • Michielse CB, Studt L, Janevska S, Sieber CM, Arndt B, Espino JJ, Humpf HU, Guldener U, Tudzynski B (2014) The global regulator FfSge1 is required for expression of secondary metabolite gene clusters but not for pathogenicity in Fusarium fujikuroi. Environ Microbiol. doi:10.1111/1462-2920.12592

    PubMed  Google Scholar 

  • Mooney JL, Yager LN (1990) Light is required for conidiation in Aspergillus nidulans. Genes Dev 4:1473–1482

  • Nguyen VQ, Sil A (2008) Temperature-induced switch to the pathogenic yeast form of Histoplasma capsulatum requires Ryp1, a conserved transcriptional regulator. Proc Natl Acad Sci USA 105:4880–4885. doi:10.1073/pnas.0710448105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oldenburg KR, Vo KT, Michaelis S, Paddon C (1997) Recombination-mediated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Res 25:451–452. doi:10.1093/nar/25.2.451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olmedo M, Ruger-Herreros C, Corrochano LM (2010) Regulation by blue light of the fluffy gene encoding a major regulator of conidiation in Neurospora crassa. Genetics 184:651–658. doi:10.1534/genetics.109.109975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park HS, Yu JH (2012) Genetic control of asexual sporulation in filamentous fungi. Curr Opin Microbiol 15:669–677. doi:10.1016/j.mib.2012.09.006

    Article  CAS  PubMed  Google Scholar 

  • Pontecorvo G, Roper JA, Hemmons LM, Macdonald KD, Bufton AWJ (1953) The genetics of Aspergillus nidulans. Adv Genet Incorp Mol Genet Med 5:141–238. doi:10.1016/S0065-2660(08)60408-3

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning Cold Spring Harbor Laboratory Press, New York, USA

  • Sancar G, Sancar C, Brugger B, Ha N, Sachsenheimer T, Gin E, Wdowik S, Lohmann I, Wieland F, Hofer T, Diernfellner A, Brunner M (2011) A global circadian repressor controls antiphasic expression of metabolic genes in Neurospora. Mol Cell 44:687–697. doi:10.1016/j.molcel.2011.10.019

    Article  CAS  PubMed  Google Scholar 

  • Sancar G, Sancar C, Brunner M (2012) Metabolic compensation of the Neurospora clock by a glucose-dependent feedback of the circadian repressor CSP1 on the core oscillator. Genes Dev 26:2435–2442. doi:10.1101/gad.199547.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher J (2012) Tools for Botrytis cinerea: new expression vectors make the gray mold fungus more accessible to cell biology approaches. Fungal Genet Biol 49:483–497. doi:10.1016/j.fgb.2012.03.005

    Article  CAS  PubMed  Google Scholar 

  • Schumacher J (2016a) DHN melanin biosynthesis in the plant pathogenic fungus Botrytis cinerea is based on two developmentally regulated key enzyme (PKS)-encoding genes. Mol Microbiol 99:729–748. doi:10.1111/mmi.13262

    Article  CAS  PubMed  Google Scholar 

  • Schumacher J (2016b) Signal transduction cascades regulating differentiation and virulence in Botrytis cinerea Botrytis—the fungus, the pathogen and its management in agricultural systems. Springer, pp 247-267

  • Schumacher J, Tudzynski P (2012) Morphogenesis and infection in Botrytis cinerea. In: Pérez-Martín J, Di Pietro A (eds) Morphogenesis and Pathogenicity in Fungi. Springer-Verlag, Berlin Heidelberg, pp 225–241

    Chapter  Google Scholar 

  • Schumacher J, Pradier JM, Simon A, Traeger S, Moraga J, Collado IG, Viaud M, Tudzynski B (2012) Natural variation in the VELVET gene bcvel1 affects virulence and light-dependent differentiation in Botrytis cinerea. PLoS One 7:e47840. doi:10.1371/journal.pone.0047840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher J, Simon A, Cohrs KC, Viaud M, Tudzynski P (2014) The transcription factor BcLTF1 regulates virulence and light responses in the necrotrophic plant pathogen Botrytis cinerea. PLoS Genet 10:e1004040. doi:10.1371/journal.pgen.1004040

    Article  PubMed  PubMed Central  Google Scholar 

  • Schumacher J, Simon A, Cohrs KC, Traeger S, Porquier A, Dalmais B, Viaud M, Tudzynski B (2015) The VELVET complex in the gray mold fungus Botrytis cinerea: impact of BcLAE1 on differentiation, secondary metabolism, and virulence. Mol Plant Microbe Interact 28:659–674. doi:10.1094/MPMI-12-14-0411-R

    Article  CAS  PubMed  Google Scholar 

  • Simon A, Biot E (2010) ANAIS: analysis of NimbleGen arrays interface. Bioinformatics 26:2468–2469. doi:10.1093/bioinformatics/btq410

    Article  CAS  PubMed  Google Scholar 

  • Staben C, Jensen B, Singer M, Pollock J, Schechtman M, Kinsey J, Selker E (1989) Use of a bacterial hygromycin B resistance gene as a dominant selectable marker in Neurospora crassa transformation. Fungal Genet Newsl 36:79–81

  • Sun X, Yu L, Lan N, Wei S, Yu Y, Zhang H, Zhang X, Li S (2012) Analysis of the role of transcription factor VAD-5 in conidiation of Neurospora crassa. Fungal Genet Biol 49:379–387. doi:10.1016/j.fgb.2012.03.003

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Oda Y (1979) Inhibitory loci of both blue and near ultraviolet lights on lateral-type sclerotial development in Botrytis cinerea. Ann Phytopath Soc Japan 45:54–61

  • Suzuki Y, Kumagai T, Oda Y (1977) Locus of blue and near ultraviolet reversible photoreaction in the stages of conidial development in Botrytis cinerea. J Gen Microbiol 98:199–204

  • Tan KK (1974) Blue light inhibition of sporulation in Botrytis cinerea. J Gener Microbiol 82:191–200

  • Taylor J, Jacobson D, Fisher M (1999) The evolution of asexual fungi: reproduction, speciation and classification. Annu Rev Phytopathol 37:197–246

  • Temme N, Oeser B, Massaroli M, Heller J, Simon A, Collado IG, Viaud M, Tudzynski P (2012) BcAtf1, a global regulator, controls various differentiation processes and phytotoxin production in Botrytis cinerea. Mol Plant Pathol 13:704–718. doi:10.1111/j.1364-3703.2011.00778.x

    Article  CAS  PubMed  Google Scholar 

  • Vyas VK, Berkey CD, Miyao T, Carlson M (2005) Repressors Nrg1 and Nrg2 regulate a set of stress-responsive genes in Saccharomyces cerevisiae. Eukaryot Cell 4:1882–1891. doi:10.1128/EC.4.11.1882-1891.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson B, Tudzynski B, Tudzynski P, van Kan JA (2007) Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol 8:561–580. doi:10.1111/j.1364-3703.2007.00417.x

    Article  CAS  PubMed  Google Scholar 

  • Wyatt TT, Wösten HA, Dijksterhuis J (2013) Fungal spores for dispersion in space and time. Adv Appl Microbiol 85:43–91

Download references

Acknowledgements

We thank Paul Tudzynski for support and discussion, Kim Cohrs for providing the expression data on the bctlf2 mutants and for help with microscopy, Bettina Richter and Charlotte Kaiser for their contributions to mutant generation, and Dominik Wagner for help with the microarray experiments. This study was supported by the Deutsche Forschungsgemeinschaft (SCHU 2833/4-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Schumacher.

Additional information

Communicated by M. Kupiec.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3878 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandhoff, B., Simon, A., Dornieden, A. et al. Regulation of conidiation in Botrytis cinerea involves the light-responsive transcriptional regulators BcLTF3 and BcREG1. Curr Genet 63, 931–949 (2017). https://doi.org/10.1007/s00294-017-0692-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-017-0692-9

Keywords

Navigation