Skip to main content
Log in

FgFlbD regulates hyphal differentiation required for sexual and asexual reproduction in the ascomycete fungus Fusarium graminearum

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Fusarium graminearum is a filamentous fungal plant pathogen that infects major cereal crops. The fungus produces both sexual and asexual spores in order to endure unfavorable environmental conditions and increase their numbers and distribution across plants. In a model filamentous fungus, Aspergillus nidulans, early induction of conidiogenesis is orchestrated by the fluffy genes. The objectives of this study were to characterize fluffy gene homologs involved in conidiogenesis and their mechanism of action in F. graminearum. We characterized five fluffy gene homologs in F. graminearum and found that FlbD is the only conserved regulator for conidiogenesis in A. nidulans and F. graminearum. Deletion of fgflbD prevented hyphal differentiation and the formation of perithecia. Successful interspecies complementation using A. nidulans flbD demonstrated that the molecular mechanisms responsible for FlbD functions are conserved in F. graminearum. Moreover, abaA-wetA pathway is positively regulated by FgFlbD during conidiogenesis in F. graminearum. Deleting fgflbD abolished morphological effects of abaA overexpression, which suggests that additional factors for FgFlbD or an AbaA-independent pathway for conidiogenesis are required for F. graminearum conidiation. Importantly, this study led to the construction of a genetic pathway of F. graminearum conidiogenesis and provides new insights into the genetics of conidiogenesis in fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams T.H., Wieser J.K., and Yu J.H. 1998. Asexual sporulation in Aspergillus nidulans. Microbiol. Mol. Biol. Rev. 62, 35–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alexopoulos C.J., Mims C.W., and Blackwell M. 1996. Introductory mycology John Wiley & Sons, New York, N.Y., USA.

    Google Scholar 

  • Aramayo R., Peleg Y., Addison R., and Metzenberg R. 1996. Asm-1 +, a Neurospora crassa gene related to transcriptional regulators of fungal development. Genetics 144, 991–1003.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arratia-Quijada J., Sánchez O., Scazzocchio C., and Aguirre J. 2012. FlbD, a Myb transcription factor of Aspergillus nidulans is uniquely involved in both asexual and sexual differentiation. Eukaryot. Cell 11, 1132–1142.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bailey L.A. and Ebbole D.J. 1998. The fluffy gene of Neurospora crassa encodes a Gal4p-type C6 zinc cluster protein required for conidial development. Genetics 148, 1813–1820.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bowden R.L. and Leslie J.F. 1992. Nitrate-nonutilizing mutants of Gibberella zeae (Fusarium graminearum) and their use in determining vegetative compatibility. Exp. Mycol. 16, 308–315.

    Article  CAS  Google Scholar 

  • Bowden R.L. and Leslie J.F. 1999. Sexual recombination in Gibberella zeae. Phytopathology 89, 182–188.

    Article  CAS  PubMed  Google Scholar 

  • Cappellini R.A. and Peterson J.L. 1965. Macroconidium formation in submerged cultures by a non-sporulating strain of Gibberella zeae. Mycologia 57, 962–966.

    Article  Google Scholar 

  • Chang M.H., Chae K.S., Han D.M., and Jahng K.Y. 2004. The GanB Ga-protein negatively regulates asexual sporulation and plays a positive role in conidial germination in Aspergillus nidulans. Genetics 167, 1305–1315.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Correll J.C., Klittich C.J.R., and Leslie J.F. 1987. Nitrate nonutilizing mutants of Fusarium oxysporum and their use in vegetative compatibility tests. Phytopathology 77, 1640–1646.

    Article  Google Scholar 

  • Ebbole D.J. 2010. The conidium, pp. 577–590. In Borkovich K.A. and Ebbole D.J. (eds.), Cellular and molecular biology of filamentous fungi, ASM Press, Washington, D.C., USA.

    Google Scholar 

  • Etxebeste O., Garzia A., Espeso E.A., and Ugalde U. 2010. Aspergillus nidulans asexual development: making the most of cellular modules. Trends Microbiol. 18, 569–576.

    Article  CAS  PubMed  Google Scholar 

  • Fischer R. and Kües U. 2006. Asexual sporulation in mycelial fungi, pp. 263–292. In Kües U. and Fischer R. (eds.), The Mycota I growth, differentiation and sexuality, Springer Berlin Heidelberg, Germany.

    Chapter  Google Scholar 

  • Garzia A., Etxebeste O., Herrero-Garcia E., Fischer R., Espeso E.A., and Ugalde U. 2009. Aspergillus nidulans FlbE is an upstream developmental activator of conidiation functionally associated with the putative transcription factor FlbB. Mol. Microbiol. 71, 172–184.

    Article  CAS  PubMed  Google Scholar 

  • Garzia A., Etxebeste O., Herrero-García E., Ugalde U., and Espeso E.A. 2010. The concerted action of bZip and cMyb transcription factors FlbB and FlbD induces brlA expression and asexual development in Aspergillus nidulans. Mol. Microbiol. 75, 1314–1324.

    Article  CAS  PubMed  Google Scholar 

  • Gasch A.P., Moses A.M., Chiang D.Y., Fraser H.B., Berardini M., and Eisen M.B. 2004. Conservation and evolution of Cis-regulatory systems in ascomycete fungi. PLoS Biol. 2, e398.

    Article  Google Scholar 

  • Guenther J.C. and Trail F. 2005. The development and differentiation of Gibberella zeae (anamorph: Fusarium graminearum) during colonization of wheat. Mycologia 97, 229–237.

    Article  PubMed  Google Scholar 

  • Han Y.K., Kim M.D., Lee S.H., Yun S.H., and Lee Y.W. 2007. A novel F-box protein involved in sexual development and pathogenesis in Gibberella zeae. Mol. Microbiol. 63, 768–779.

    Article  CAS  PubMed  Google Scholar 

  • Harris S.D. 2005. Morphogenesis in germinating Fusarium graminearum macroconidia. Mycologia 97, 880–887.

    Article  PubMed  Google Scholar 

  • Hong S.Y., So J., Lee J., Min K., Son H., Park C., Yun S.H., and Lee Y.W. 2010. Functional analyses of two syntaxin-like SNARE genes, GzSYN1 and GzSYN2, in the ascomycete Gibberella zeae. Fungal Genet. Biol. 47, 364–372.

    Article  CAS  PubMed  Google Scholar 

  • Horwitz B.A., Sharon A., Lu S.W., Ritter V., Sandrock T.M., Yoder O.C., and Turgeon B.G. 1999. AG protein alpha subunit from Cochliobolus heterostrophus involved in mating and appressorium formation. Fungal Genet. Biol. 26, 19–32.

    Article  CAS  PubMed  Google Scholar 

  • Kim J.E., Han K.H., Jin J., Kim H., Kim J.C., Yun S.H., and Lee Y.W. 2005. Putative polyketide synthase and laccase genes for biosynthesis of aurofusarin in Gibberella zeae. Appl. Environ. Microbiol. 71, 1701–1708.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kwon N.J., Garzia A., Espeso E.A., Ugalde U., and Yu J.H. 2010a. FlbC is a putative nuclear C2H2 transcription factor regulating development in Aspergillus nidulans. Mol. Microbiol. 77, 1203–1219.

    Article  CAS  PubMed  Google Scholar 

  • Kwon N.J., Shin K.S., and Yu J.H. 2010b. Characterization of the developmental regulator FlbE in Aspergillus fumigatus and Aspergillus nidulans. Fungal Genet. Biol. 47, 981–993.

    Article  CAS  PubMed  Google Scholar 

  • Lau G.W. and Hamer J.E. 1998. Acropetal: A genetic locus required for conidiophore architecture and pathogenicity in the rice blast fungus. Fungal Genet. Biol. 24, 228–239.

    Article  CAS  PubMed  Google Scholar 

  • Lee B.N. and Adams T.H. 1994. The Aspergillus nidulans fluG gene is required for production of an extracellular developmental signal and is related to prokaryotic glutamine synthetase I. Genes Dev. 8, 641–651.

    Article  CAS  PubMed  Google Scholar 

  • Lee J.Y., Kim L.H., Kim H.E., Park J.S., Han K.H., and Han D.M. 2013. A putative APSES transcription factor is necessary for normal growth and development of Aspergillus nidulans. J. Microbiol. 51, 800–806.

    Article  CAS  PubMed  Google Scholar 

  • Lee S.H., Lee J., Lee S., Park E.H., Kim K.W., Kim M.D., Yun S.H., and Lee Y.W. 2009. GzSNF1 is required for normal sexual and asexual development in the ascomycete Gibberella zeae. Eukaryot. Cell 8, 116–127.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee J., Lee T., Lee Y.W., Yun S.H., and Turgeon B.G. 2003. Shifting fungal reproductive mode by manipulation of mating type genes: obligatory heterothallism of Gibberella zeae. Mol. Microbiol. 50, 145–152.

    Article  CAS  PubMed  Google Scholar 

  • Lengeler K.B., Davidson R.C., D’souza C., Harashima T., Shen W.C., Wang P., Pan X., Waugh M., and Heitman J. 2000. Signal transduction cascades regulating fungal development and virulence. Microbiol. Mol. Biol. Rev. 64, 746–785.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leslie J.F. and Summerell B.A. 2006. The Fusarium laboratory manual. Blackwell Pub., Ames, I.A., USA.

    Google Scholar 

  • Lin Y., Son H., Lee J., Min K., Choi G.J., Kim J.C., and Lee Y.W. 2011. A putative transcription factor MYT1 is required for female fertility in the ascomycete Gibberella zeae. PLoS ONE 6, e25586.

    Article  Google Scholar 

  • Livak K.J. and Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Lysøe E., Pasquali M., Breakspear A., and Kistler H.C. 2011. The transcription factor FgStuAp influences spore development, pathogenicity, and secondary metabolism in Fusarium graminearum. Mol. Plant-Microbe Interact. 24, 54–67.

    Article  PubMed  Google Scholar 

  • Namiki F., Matsunaga M., Okuda M., Inoue I., Nishi K., Fujita Y., and Tsuge T. 2001. Mutation of an arginine biosynthesis gene causes reduced pathogenicity in Fusarium oxysporum f. sp melonis. Mol. Plant-Microbe Interact. 14, 580–584.

    Article  CAS  PubMed  Google Scholar 

  • Ohara T., Inoue I., Namiki F., Kunoh H., and Tsuge T. 2004. REN1 is required for development of microconidia and macroconidia, but not of chlamydospores, in the plant pathogenic fungus Fusarium oxysporum. Genetics 166, 113–124.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohara T. and Tsuge T. 2004. FoSTUA, encoding a basic helixloop- helix protein, differentially regulates development of three kinds of asexual spores, macroconidia, microconidia, and chlamydospores, in the fungal plant pathogen Fusarium oxysporum. Eukaryot. Cell 3, 1412–1422.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park A.R., Cho A.R., Seo J.A., Min K., Son H., Lee J., Choi G.J., Kim J.C., and Lee Y.W. 2012. Functional analyses of regulators of G protein signaling in Gibberella zeae. Fungal Genet. Biol. 49, 511–520.

    Article  CAS  PubMed  Google Scholar 

  • Park H.S. and Yu J.H. 2012. Genetic control of asexual sporulation in filamentous fungi. Curr. Opin. Microbiol. 15, 669–677.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Urra A.B., Jiménez C., Nieto M.I., Rodríguez J., Hayashi H., and Ugalde U. 2012. Signaling the induction of sporulation involves the interaction of two secondary metabolites in Aspergillus nidulans. ACS Chem. Biol. 7, 599–606.

    Article  PubMed  Google Scholar 

  • Sambrook J. and Russell D.W. 2001. Molecular cloning: a laboratory manual, 4nd ed Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., USA.

    Google Scholar 

  • Seo J.A., Guan Y., and Yu J.H. 2003. Suppressor mutations bypass the requirement of fluG for asexual sporulation and sterigmatocystin production in Aspergillus nidulans. Genetics 165, 1083–1093.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seo J.A., Guan Y., and Yu J.H. 2006. FluG-dependent asexual development in Aspergillus nidulans occurs via derepression. Genetics 172, 1535–1544.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shen W.C., Wieser J., Adams T.H., and Ebbole D.J. 1998. The Neurospora rca-1 gene complements an Aspergillus flbD sporulation mutant but has no identifiable role in Neurospora sporulation. Genetics 148, 1031–1041.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimizu K. and Keller N.P. 2001. Genetic involvement of a cAMPdependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics 157, 591–600.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Soid-Raggi G., Sánchez O., and Aguirre J. 2006. TmpA, a member of a novel family of putative membrane flavoproteins, regulates asexual development in Aspergillus nidulans. Mol. Microbiol. 59, 854–869.

    Article  CAS  PubMed  Google Scholar 

  • Son H., Kim M.G., Min K., Seo Y.S., Lim J.Y., Choi G.J., Kim J.C., Chae S.K., and Lee Y.W. 2013. AbaA regulates conidiogenesis in the ascomycete fungus Fusarium graminearum. PLoS ONE 8, e729815.

    Google Scholar 

  • Son H., Kim M.G., Min K., Seo Y.S., Lim J.Y., Choi G.J., Kim J.C., Chae S.K., and Lee Y.W. 2014. WetA is required for conidiogenesis and conidia maturation in the ascomycete fungus Fusarium graminearum. Eukaryot. Cell 13, 87–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Son H., Lee J., Park A.R., and Lee Y.W. 2011a. ATP citrate lyase is required for normal sexual and asexual development in Gibberella zeae. Fungal Genet. Biol. 48, 408–417.

    Article  CAS  PubMed  Google Scholar 

  • Son H., Seo Y.S., Min K., Park A.R., Lee J., Jin J.M., Lin Y., Cao P., Hong S.Y., Kim E.K., and et al. 2011b. A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum. PLoS Pathog. 7, e100230.

    Article  Google Scholar 

  • Trail F., Xu H., Loranger R., and Gadoury D. 2002. Physiological and environmental aspects of ascospore discharge in Gibberella zeae (anamorph Fusarium graminearum). Mycologia 94, 181–189.

    Article  PubMed  Google Scholar 

  • Tuch B.B., Li H., and Johnson A.D. 2008. Evolution of eukaryotic transcription circuits. Science 319, 1797–1799.

    Article  CAS  PubMed  Google Scholar 

  • Wieser J. and Adams T.H. 1995. flbD encodes a Myb-like DNAbinding protein that coordinates initiation of Aspergillus nidulans conidiophore development. Genes Dev. 9, 491–502.

    Article  CAS  PubMed  Google Scholar 

  • Wong P., Walter M., Lee W., Mannhaupt G., Münsterkötter M., Mewes H.W., Adam G., and Güldener U. 2011. FGDB: revisiting the genome annotation of the plant pathogen Fusarium graminearum. Nucleic Acids Res. 39, D637–D639.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu J.H. 2006. Heterotrimeric G protein signaling and RGSs in Aspergillus niduians. J. Microbiol. 44, 145–154.

    CAS  PubMed  Google Scholar 

  • Yu J.H., Hamari Z., Han K.H., Seo J.A., Reyes-Dominguez Y., and Scazzocchio C. 2004. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41, 973–981.

    Article  CAS  PubMed  Google Scholar 

  • Yu J.H., Wieser J., and Adams T.H. 1996. The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. EMBO J. 15, 5184–5190.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin-Won Lee.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, H., Kim, MG., Chae, SK. et al. FgFlbD regulates hyphal differentiation required for sexual and asexual reproduction in the ascomycete fungus Fusarium graminearum . J Microbiol. 52, 930–939 (2014). https://doi.org/10.1007/s12275-014-4384-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-014-4384-6

Keywords

Navigation