Skip to main content
Log in

The isoprenoid pathway in the ectomycorrhizal fungus Tuber borchii Vittad.: cloning and characterisation of the tbhmgr, tbfpps and tbsqs genes

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The isoprenoid pathway of the ectomycorrhizal fungus Tuber borchii Vittad is investigated to better understand the molecular mechanisms at work, in particular during the maturation of the complex ascomata (the so-called “truffles”). Three T. borchii genes coding for the most important regulatory enzymes of the isoprenoid biosynthesis, 3-hydroxy-3-methylglutaryl-CoA reductase, farnesyl-diphosphate synthase (FPPS) and squalene synthase (SQS), were cloned and characterised. The analyses of their nucleotide and deduced amino acid sequences led us to identify the typical domains shown in homologous proteins. By using a quantitative real-time PCR the expression pattern of the three genes was analysed in the vegetative phase and during the complex ascoma maturation process, revealing an over-expression in the mature ascomata. The enzymatic activity of the T. borchii 3-hydroxy-3-methylglutaril-CoA reductase (HMGR) was investigated with a HPLC method, confirming that the significant isoprenoid biosynthesis in ripe ascomata proceeds not only via a transcriptional activation, but also via an enzyme activity control. These findings imply that isoprenoids play a fundamental role in Tuber ascomata, particularly in the last phases of their maturation, when they could be involved in antifungal or/and antimicrobial processes and contribute to the famous flavour of the truffle ascomata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bach TJ (1995) Some new aspects of isoprenoid biosynthesis in plants: a review. Lipids 30:191–202

    PubMed  CAS  Google Scholar 

  • Barkovich R, Liao CJ (2001) Metabolic engineering of isoprenoids. Metab Eng 3:27–39

    Article  PubMed  CAS  Google Scholar 

  • Bon E, Casaregola S, Blandin G, Llorente B, Neuveglise C, Munsterkotter M, Guldener U, Mewes HW, Van Helden J, Dujon B, Gaillardin C (2003) Molecular evolution of eukaryotic genomes: hemiascomycetous yeast spliceosomal introns. Nucleic Acids Res 31:1121–1135

    Article  PubMed  CAS  Google Scholar 

  • Breathnach R, Benoist C, O’Hare K, Gannon F, Chambon P (1978) Ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the exon-intron boundaries. Proc Natl Acad Sci USA 75:4853–4857

    Article  PubMed  CAS  Google Scholar 

  • Buffalini M, Pierleoni R, Guidi C, Ceccaroli P, Saltarelli R, Vallorani L, Zeppa S, Stocchi V (2005) Novel and simple high-performance liquid chromatographic method for determination of 3-hydroxy-3-methylgltaryl-coenzyme a reductase activity. J Chromatogr B Anal Technol Biomed Life Sci 819:307–313

    CAS  Google Scholar 

  • Cunillera N, Arro M, Delourme D, Karst F, Boronat A, Ferrer A (1996) Arabidopsis thaliana contains two differentially expressed farnesyl-diphosphate synthase genes. J Biol Chem 271:7774–7780

    Article  PubMed  CAS  Google Scholar 

  • Enjuto M, Balcells L, Campos N, Caelles C, Arro M, Boronat A (1994) Arabidopsis thaliana contains two differentially expressed 3- hydroxy-3-methylglutaril-CoA reductase genes, which encode microsomal forms of the enzyme. Proc Natl Acad Sci USA 91:927–931

    Article  PubMed  CAS  Google Scholar 

  • Erland S, Henrion B, Martin F, Glover LA, Alexander IJ (1993) Identification of the ectomycorrhizal basidiomycete Tylospora fibrillosa by RFLP analysis of the PCR-amplified ITS and IGS regions of the ribosomal DNA. New Phytol 126:525–532

    Article  Google Scholar 

  • Gabella S, Abba S, Duplessis S, Montanini B, Martin F, Bonfante P (2005) Transcript profiling reveals novel marker genes involved in fruiting body formation in Tuber borchii. Eukaryot Cell 4:1599–1602

    Article  PubMed  CAS  Google Scholar 

  • Goldestein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430

    Article  Google Scholar 

  • Guescini M, Pierleoni R, Palma F, Zeppa S, Vallorani L, Potenza L, Sacconi C, Giomaro G, Stocchi V (2003) Characterization of the Tuber borchii nitrate reductase gene and its role in ectomychorrizae. Mol Genet Genomics 269:807–816

    Article  PubMed  CAS  Google Scholar 

  • Homann V, Mende K, Arntz C, Ilardi V, Macino G, Morelli G, Bose G, Tudzynski B (1996) The isoprenoid pathway: cloning and characterization of fungal FPPS genes. Curr Genet 30:232–239

    Article  PubMed  CAS  Google Scholar 

  • Karst F, Plochocka D, Meyer S, Szkopinska A (2004) Farnesyl diphosphate synthase activity affects ergosterol level and proliferation of yeast Saccharomyces cerevisae. Cell Biol Int 28:193–197

    Article  PubMed  CAS  Google Scholar 

  • Keller NP, Hohn TM (1997) Metabolic pathway gene cluster in filamentous fungi. Fungal Genet Biol 21:17–29

    Article  PubMed  CAS  Google Scholar 

  • Kinghorn JR (1987) Gene structure in eukaryotic microbes. IRL Press, Oxford, pp 93–99

    Google Scholar 

  • Kozak M (1981) Mechanisms of mRNA recognition by eukaryotic ribosomes during initiation of protein synthesis. Curr Top Microbiol Immunol 93:81–123

    PubMed  CAS  Google Scholar 

  • Kudla B, Caddick MX, Langdon T, Martinez-Rossi NM, Bennett CF, Sibley S, Davies RW, Arst HN Jr (1990) The regulatory gene are a mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. EMBO J 9:1355–1364

    PubMed  CAS  Google Scholar 

  • Lacourt I, Duplessis S, Abba S, Bonfante P, Martin F (2002) Isolation and characterization of differentially expressed genes in the mycelium and fruit body of Tuber borchii. Appl Environ Microbiol 68:4574–4582

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough AL, Farr RJ, Randall J (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015–1026

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Pierleoni R, Buffalini M, Vallorani L, Guidi C, Zeppa S, Sacconi C, Pucci P, Amoresano A, Casbarra A, Stocchi V (2004) Tuber borchii fruit body: 2-dimensional profile and protein identification. Phytochemistry 65:813–820

    Article  PubMed  CAS  Google Scholar 

  • Saltarelli R, Ceccaroli P, Vallorani L, Zambonelli A, Citterio B, Malatesta M, Stocchi V (1998) Biochemical and morphological modifications during the growth of Tuber borchii mycelium. Mycol Res 102:403–409

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis TA (1989) Molecular cloning: a laboratory manual 2nd edn. Cold Spring Harbor Laboratory Press, Cold Springer Harbor, NY

    Google Scholar 

  • Sato R, Goldstein JL, Brown MS (1993) Replacement of serine-871 of hamster 3-hydroxy-3-methylglutaryl-CoA reductase prevents phosphorylation by AMP-activated kinase and blocks inhibition of sterol synthesis induced by ATP depletion. Proc Natl Acad Sci USA 90:9261–9265

    Article  PubMed  CAS  Google Scholar 

  • Seong K, Li L, Hou Z, Tracy M, Kistler HB, Xu JR (2006) Cryptic promoter activity in the coding region of the HMG-CoA reductase gene in Fusarium graminearum. Fungal Genet Biol 43:34–41

    Article  PubMed  CAS  Google Scholar 

  • Sisti D, Giomaro G, Cecchini M, Faccio A, Novero M, Bonfante P (2003) Two genetically related strains of Tuber borchii produce Tilia mycorrhizas with different morphological traits. Mycorrhiza 13:107–115

    Article  PubMed  CAS  Google Scholar 

  • Szkopinska A, Swiezewska E, Karst F (2000) The regulation of activity of main mevalonic acid pathway enzymes: farnesyl diphosphate synthase, 3-hydroxy-3-methylglutaryl-CoA reductase, and squalene synthase in yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 267:473–477

    Article  PubMed  CAS  Google Scholar 

  • Tansey TR, Shechter I (2000) Structure and regulation of mammalian squalene synthase. Biochim Biophys Acta 1529:49–62

    PubMed  CAS  Google Scholar 

  • Tudzynski B, Holter K (1998) Gibberellin biosynthetic pathway in Gibberella fujikuroi: evidence for a gene cluster. Fungal Genet Biol 25:157–170

    Article  PubMed  CAS  Google Scholar 

  • Tudzynski B (2005) Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology. Appl Microbiol Biotechnol 66:597–611

    Article  PubMed  CAS  Google Scholar 

  • Woitek S, Unkles SE, Kinghorn JR, Tudzynski B (1997) 3-hydroxy-3-methylglutaryl-CoA reductase gene of Gibberella fujikuroi: isolation and characterisation. Curr Genet 31:38–47

    Article  PubMed  CAS  Google Scholar 

  • Zambonelli A, Iotti M, Rossi I, Hall I (2000) Interaction between Tuber borchii and other ectomycorrhizal fungi in a field plantation. Mycol Res 104:698–702

    Article  Google Scholar 

  • Zeppa S, Guidi C, Zambonelli A, Potenza L, Vallorani L, Pierleoni R, Sacconi C, Stocchi V (2002) Identification of putative genes involved in the development of Tuber borchiii fruit body by mRNA differential display in agarose gel. Curr Genet 42:161–168

    Article  PubMed  CAS  Google Scholar 

  • Zeppa S, Gioacchini AM, Guidi C, Guescini M, Pierleoni R, Zambonelli A, Stocchi V (2004) Determination of specific volatile organic compounds synthesised during Tuber borchii fruit body development by solid-phase microextraction and gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 18:199–205

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Stocchi.

Additional information

Communicated by U. Kües.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guidi, C., Zeppa, S., Annibalini, G. et al. The isoprenoid pathway in the ectomycorrhizal fungus Tuber borchii Vittad.: cloning and characterisation of the tbhmgr, tbfpps and tbsqs genes. Curr Genet 50, 393–404 (2006). https://doi.org/10.1007/s00294-006-0097-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-006-0097-7

Keywords

Navigation