Skip to main content
Log in

The Neurospora crassa mus-19 gene is identical to the qde-3 gene, which encodes a RecQ homologue and is involved in recombination repair and postreplication repair

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

An allele called mus-19 was identified by screening temperature-sensitive and mutagen-sensitive mutants of Neurospora crassa. The mus-19 gene was genetically mapped to a region near the end of the right arm of linkage group I, where a RecQ homologue called qde-3 had been physically mapped in the Neurospora database. Complementation tests between the mus-19 mutant and the qde-3 RIP mutant showed that mus-19 and qde-3 were the same gene. The qde-3 genes of both mutants were cloned and sequenced; and the results showed that they have mutation(s) in their qde-3 genes. The original mus-19 and qde-3 RIP mutants are defective in quelling, as reported for other qde-3 mutants. The mutants show high sensitivity to methyl methanesulfonate, ethyl methanesulfonate, N-methyl-N′-nitro-N-nitrosoguanidine, tert-butyl hydroperoxide, 4-nitroquinoline-1-oxide, hydroxyurea and histidine. Epistasis analysis indicated that the qde-3 gene belongs both to the uvs-6 recombination repair pathway and the uvs-2 postreplication repair pathway. The qde-3 mutation has no effect on the integration of a plasmid carrying the mtr gene by homologous recombination. In homozygous crosses, the qde-3 mutant is defective in ascospore production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A, B
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bennett RJ, Keck JL, Wang JC (1999) Binding specificity determines polarity of DNA unwinding by the Sgs1 protein of S. cerevisiae. J Mol Biol 289:235–248

    CAS  PubMed  Google Scholar 

  • Broomfield S, Hryciw T, Xiao W (2001) DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae. Mutat Res 486:167–184

    CAS  PubMed  Google Scholar 

  • Carroll AM, Sweigard JA, Valent B (1994) Improved vectors for selecting resistance to hygromycin. Fungal Genet Newsl 41:22

    Google Scholar 

  • Cogoni C, Macino G (1999) Posttranscriptional gene silencing in Neurospora by a RecQ DNA helicase. Science 286:2342–2344

    Article  CAS  PubMed  Google Scholar 

  • Cogoni C, Irelan JT, Schumacher M, Schmidhauser TJ, Selker EU, Macino G (1996) Transgene silencing of the al-1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA–DNA interactions or DNA methylation. EMBO J 15:3153–3163

    CAS  PubMed  Google Scholar 

  • Courcelle J, Hanawalt PC (1999) RecQ and RecJ process blocked replication forks prior to the resumption of replication in UV-irradiated Escherichia coli. Mol Gen Genet 262:543–551

    Google Scholar 

  • Davis RH, Serres FJ de (1970) Genetic and microbiological research techniques for Neurospora crassa. Methods Enzymol 17:79–143

    CAS  Google Scholar 

  • Doe CL, Dixon J, Osman F, Whitby MC (2000) Partial suppression of the fission yeast rqh1 phenotype by expression of a bacterial Holliday junction resolvase. EMBO J 19:2751–2762

    CAS  PubMed  Google Scholar 

  • Ellis NA, Groden J, Ye TZ, Straughen J, Lennon DJ, Ciocci S, Proytcheva M, German J (1995) The Bloom′s syndrome gene product is homologous to RecQ helicases. Cell 83:655–666

    CAS  PubMed  Google Scholar 

  • Franchitto A, Pichierri P (2002) Bloom′s syndrome protein is required for correct relocalization of RAD50/MRE11/NBS1 complex after replication fork arrest. J Cell Biol 157:19–30

    CAS  PubMed  Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, Ianakiev P, Bell-Pedersen D, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stange-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li W, Pratt RJ, Osmani SA, DeSouza CP, Glass L, Orbach MJ, Berglund JA, Voelker R, Yarden O, Plamann M, Seiler S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868

    CAS  PubMed  Google Scholar 

  • Gangloff S, McDonald JP, Bendixen C, Arthur L, Rothstein R (1994) The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol Cell Biol 14:8391–8398

    CAS  PubMed  Google Scholar 

  • German J (1993) Bloom syndrome: a Mendelian prototype of somatic mutational disease. Medicine (Baltimore) 72:393–406

    Google Scholar 

  • Hanada K, Ukita T, Kohno Y, Saito K, Kato J, Ikeda H (1997) RecQ DNA helicase is a suppressor of illegitimate recombination in Escherichia coli. Proc Natl Acad Sci USA 94:3860–3865

    CAS  PubMed  Google Scholar 

  • Handa N, Noguchi Y, Sakuraba Y, Ballario P, Macino G, Fujimoto N, Ishii C, Inoue H (2000) Characterization of the Neurospora crassa mus-25 mutant: the gene encodes a protein which is homologous to the Saccharomyces cerevisiae Rad54 protein. Mol Gen Genet 264:154–163

    CAS  PubMed  Google Scholar 

  • Harmon FG, Kowalczykowski SC (1998) RecQ helicase, in concert with RecA and SSB proteins, initiates and disrupts DNA recombination. Genes Dev 12:1134–1144

    CAS  PubMed  Google Scholar 

  • Inoue H (1999) DNA repair and specific-locus mutagenesis in Neurospora crassa. Mutat Res 437:121–133

    CAS  PubMed  Google Scholar 

  • Inoue H, Ishii C (1984) Isolation and characterization of MMS-sensitive mutants of Neurospora crassa. Mutat Res 125:185–194

    CAS  PubMed  Google Scholar 

  • Ishii C, Nakamura K, Inoue H (1998) A new UV-sensitive mutant that suggests a second excision repair pathway in Neurospora crassa. Mutat Res 408:171–182

    CAS  PubMed  Google Scholar 

  • Karow JK, Constantinou A, Li JL, West SC, Hickson ID (2000) The Bloom′s syndrome gene product promotes branch migration of Holliday junctions. Proc Natl Acad Sci USA 97:6504–6508

    CAS  PubMed  Google Scholar 

  • Mohaghegh P, Karow JK, Brosh RM Jr, Bohr VA, Hickson ID (2001) The Bloom′s and Werner′s syndrome proteins are DNA structure-specific helicases. Nucleic Acids Res 29:2843–2849

    CAS  PubMed  Google Scholar 

  • Nakayama H, Nakayama K, Nakayama R, Irino N, Nakayama Y, Hanawalt PC (1984) Isolation and genetic characterization of a thymineless death-resistant mutant of Escherichia coli K12: identification of a new mutation (recQ1) that blocks the RecF recombination pathway. Mol Gen Genet 195:474–480

    CAS  PubMed  Google Scholar 

  • Nakayama K, Irino N, Nakayama H (1985) The recQ gene of Escherichia coli K12: molecular cloning and isolation of insertion mutants. Mol Gen Genet 200:266–271

    Google Scholar 

  • Newmeyer D, Galeazi DR (1978) A meiotic UV-sensitive mutant which causes deletion of duplications in Neurospora. Genetics 89:245–269

    Google Scholar 

  • Onoda F, Seki M, Miyajima A, Enomoto T (2000) Elevation of sister chromatid exchange in Saccharomyces cerevisiae sgs1 disruptants and the relevance of the disruptants as a system to evaluate mutations in Bloom′s syndrome gene. Mutat Res 459:203–209

    CAS  PubMed  Google Scholar 

  • Onoda F, Seki M, Miyajima A, Enomoto T (2001) Involvement of SGS1 in DNA damage-induced heteroallelic recombination that requires RAD52 in Saccharomyces cerevisiae. Mol Gen Genet 264:702–708

    CAS  PubMed  Google Scholar 

  • Raju NB, Perkins DD (1978) Barren perithecia in Neurospora crassa. Can J Genet Cytol 20:41–59

    Google Scholar 

  • Sakuraba Y, Schroeder AL, Ishii C, Inoue H (2000) A Neurospora double-strand-break repair gene, mus-11, encodes a RAD52 homologue and is inducible by mutagens. Mol Gen Genet 264:392–401

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis TM (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Schroeder AL, Pall ML, Lotzgesell J, Siino J (1995) Homologous recombination following transformation in Neurospora crassa wild type and mutagen sensitive strains. Fungal Genet Newsl 42:65–68

    Google Scholar 

  • Schroeder AL, Inoue H, Sachs MS (1998) DNA repair in Neurospora. In: Nickoloff JA, Hoekstra MF (eds) DNA damage and repair, vol 1. Humana Press, Totawa, N.J., pp 503–538

  • Selker EU, Cambareri EB, Jensen BC, Haack KR (1987) Rearrangement of duplicated DNA in specialized cells of Neurospora. Cell 51:741–752

    CAS  PubMed  Google Scholar 

  • Sengupta S, Linke SP, Pedeux R, Yang Q, Farnsworth J, Garfield SH, Valerie K, Shay JW, Ellis NA, Wasylyk B, Harris CC (2003) BLM helicase-dependent transport of p53 to sites of stalled DNA replication forks modulates homologous recombination. EMBO J 22:1210–1222

    CAS  PubMed  Google Scholar 

  • Stadler DR, Smith DA (1968) A new mutation in Neurospora for sensitivity to ultraviolet. Can J Genet Cytol 10:916–919

    CAS  PubMed  Google Scholar 

  • Tamaru H, Inoue H (1989) Isolation and characterization of a laccase-derepressed mutant of Neurospora crassa. J Bacteriol 171:6288–6293

    CAS  PubMed  Google Scholar 

  • Tomita H, Soshi T, Inoue H (1993) The Neurospora uvs-2 gene encodes a protein which has homology to yeast RAD18, with unique zinc finger motifs. Mol Gen Genet 238:225–233

    CAS  PubMed  Google Scholar 

  • Umezu K, Nakayama K, Nakayama H (1990) Escherichia coli RecQ protein is a DNA helicase. Proc Natl Acad Sci USA 87:5363–5367

    CAS  PubMed  Google Scholar 

  • Vollmer SJ, Yanofsky C (1986) Efficient cloning of genes of Neurospora crassa. Proc Natl Acad Sci USA 83:4869–4873

    CAS  Google Scholar 

  • Watanabe K, Sakuraba Y, Inoue H (1997) Genetic and molecular characterization of Neurospora crassa mus-23: a gene involved in recombinational repair. Mol Gen Genet 256:436–445

    CAS  PubMed  Google Scholar 

  • Watt PM, Louis EJ, Borts RH, Hickson ID (1995) Sgs1: a eukaryotic homolog of E. coli RecQ that interacts with topoisomerase II in vivo and is required for faithful chromosome segregation. Cell 81:253–260

    CAS  PubMed  Google Scholar 

  • Watt PM, Hickson ID, Borts RH, Louis EJ (1996) SGS1, a homologue of the Bloom′s and Werner′s syndrome genes, is required for maintenance of genome stability in Saccharomyces cerevisiae. Genetics 144:935–945

    CAS  PubMed  Google Scholar 

  • Wu L, Davies SL, Levitt NC, Hickson ID (2001) Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51. J Biol Chem 276:19375–19381

    CAS  PubMed  Google Scholar 

  • Yamagata K, Kato J, Shimamoto A, Goto M, Furuichi Y, Ikeda H (1998) Bloom′s and Werner′s syndrome genes suppress hyperrecombination in yeast sgs1 mutant: implication for genomic instability in human diseases. Proc Natl Acad Sci USA 95:8733–8738

    CAS  PubMed  Google Scholar 

  • Yu CE, Oshima J, Fu YH, Wijsman EM, Hisama F, Alisch R, Matthews S, Nakura J, Miki T, Ouais S, Martin GM, Mulligan J, Schellenberg GD (1996) Positional cloning of the Werner′s syndrome gene. Science 272:258–262

    Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science. The authors thank Hiroshi Iwasaki for his help in sequencing and George R. Hoffmann for his kind review of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Inoue.

Additional information

Communicated by U. Kück

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, A., Akamatsu, Y., Sakuraba, Y. et al. The Neurospora crassa mus-19 gene is identical to the qde-3 gene, which encodes a RecQ homologue and is involved in recombination repair and postreplication repair. Curr Genet 45, 37–44 (2004). https://doi.org/10.1007/s00294-003-0459-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-003-0459-3

Keywords

Navigation