Skip to main content

Advertisement

Log in

Strategies for the identification of virulence determinants in human pathogenic fungi

  • Review Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract.

The incidence of fungal infections is increasing in different countries. The current available therapy of these infections does not satisfy all requirements in terms of specificity and therapeutic index, a fact that has stimulated the scientific community to identify fungal virulence determinants. Several pathogenic fungi are opportunistic and, therefore, identification of virulence genes is difficult, given their close relationship with host cells. In recent years, the development of genetic tools in several pathogenic fungi has enabled the development of genetic strategies for their identification. These include several strategies based on the phenotypic analysis of strains or environmental conditions in which the expression of the putative gene(s) is either altered or deleted; and this is accomplished through the development of in vitro or in vivo systems. In the near future, this research will produce a better picture of fungal pathogenesis and therefore define novel promising targets in antifungal therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alarco AM, Raymond M (1999) The bZip transcription factor Cap1p is involved in multidrug resistance and oxidative stress response in Candida albicans. J Bacteriol 181:700–708

    CAS  PubMed  Google Scholar 

  • Alonso-Monge R, Navarro-García F, Molero G, Diez-Orejas R, Gustin M, Pla J, Sánchez M, Nombela C (1999) Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. J Bacteriol 181:3058–3068

    CAS  PubMed  Google Scholar 

  • Augsten M, Hubner C, Nguyen M, Kunkel W, Hartl A, Eck R (2002) Defective hyphal induction of a Candida albicans phosphatidylinositol 3-phosphate 5-kinase null mutant on solid media does not lead to decreased virulence. Infect Immun 70:4462–4470

    Article  CAS  PubMed  Google Scholar 

  • Beckerman J, Chibana H, Turner J, Magee PT (2001) Single-copy IMH3 allele is sufficient to confer resistance to mycophenolic acid in Candida albicans and to mediate transformation of clinical Candida species. Infect Immun 69:108–114

    Google Scholar 

  • Bennett JE (1996) Antimicrobial agents: antifungal agents, 8th edn. Pergamon, New York, pp 1165-1181

    Google Scholar 

  • Bernhardt J, Herman D, Sheridan M, Calderone R (2001) Adherence and invasion studies of Candida albicans strains, using in vitro models of esophageal candidiasis. J Infect Dis 184:1170–1175

    Article  CAS  PubMed  Google Scholar 

  • Birse CE, Irwin MY, Fonzi WA, Sypherd PS (1993) Cloning and characterization of ECE1, a gene expressed in association with cell elongation of the dimorphic pathogen Candida albicans. Infect Immun 61:3648–3655

    CAS  PubMed  Google Scholar 

  • Bossche H vanden, Dromer F, Improvisi I, Lozano-Chiu M, Rex JH, Sanglard D (1998) Antifungal drug resistance in pathogenic fungi. Med Mycol 36 [Suppl 1]:119–128

    Google Scholar 

  • Braun BR, Johnson AD (1997) Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277:105–109

    CAS  PubMed  Google Scholar 

  • Braun BR, Head WS, Wang MX, Johnson AD (2000) Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics 156:31–44

    CAS  PubMed  Google Scholar 

  • Brown AJP, Bertram G, Feldmann PJ, Peggie MW, Swoboda RK (1991) Codon utilisation in the pathogenic yeast, Candida albicans. Nucleic Acids Res 19:4298

    CAS  PubMed  Google Scholar 

  • Brown DH Jr, Slobodkin IV, Kumamoto CA (1996) Stable transformation and regulated expression of an inducible reporter construct in Candida albicans using restriction enzyme-mediated integration. Mol Gen Genet 251:75–80

    Google Scholar 

  • Brown JS, Aufauvre-Brown A, Brown J, Jennings JM, Arst H Jr, Holden DW (2000) Signature-tagged and directed mutagenesis identify PABA synthetase as essential for Aspergillus fumigatus pathogenicity. Mol Microbiol 36:1371–1380

    Article  CAS  PubMed  Google Scholar 

  • Buchanan KL, Murphy JW (1998) What makes Cryptococcus neoformans a pathogen? Emerg Infect Dis 4:71–83

    CAS  PubMed  Google Scholar 

  • Burik JA van, Magee PT (2001) Aspects of fungal pathogenesis in humans. Annu Rev Microbiol 55:743–772

    PubMed  Google Scholar 

  • Calderone R, Fonzi W (2001) Virulence factors of Candida albicans. Trends Microbiol 9:327–335

    Article  CAS  PubMed  Google Scholar 

  • Calderone R, Diamond R, Senet JM, Warmington J, Filler S, Edwards JE (1994) Host cell–fungal cell interactions. J Med Vet Mycol 32 [Suppl 1]:151–168

    Google Scholar 

  • Calderone R, Suzuki S, Cannon R, Cho T, Boyd D, Calera J, Chibana H, Herman D, Holmes A, Jeng HW, Kaminishi H, Matsumoto T, Mikami T, O'Sullivan JM, Sudoh M, Suzuki M, Nakashima Y, Tanaka T, Tompkins GR, Watanabe T (2000) Candida albicans: adherence, signaling and virulence. Med Mycol 38 [Suppl 1]:125–137

  • Calera JA, Zhao XJ, De Bernardis F, Sheridan M, Calderone R (1999) Avirulence of Candida albicans CaHK1 mutants in a murine model of hematogenously disseminated candidiasis. Infect Immun 67:4280–4284

    CAS  PubMed  Google Scholar 

  • Cannon RD, Niimi K, Jenkinson HF, Shepherd MG (1994) Molecular cloning and expression of the Candida albicans beta-N-acetylglucosaminidase (HEX1) gene. J Bacteriol 176:2640–2647

    CAS  PubMed  Google Scholar 

  • Casadevall A, Pirofski LA (1999) Host–pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect Immun 67:3703–3713

    CAS  PubMed  Google Scholar 

  • Casadevall A, Pirofski LA (2000) Host–pathogen interactions: basic concepts of microbial commensalism, colonization, infection, and disease. Infect Immun 68:6511–6518

    CAS  PubMed  Google Scholar 

  • Casadevall A, Rosas AL, Nosanchuk JD (2000) Melanin and virulence in Cryptococcus neoformans. Curr Opin Microbiol 3:354–358

    Article  CAS  PubMed  Google Scholar 

  • Chambers RS, Broughton MJ, Cannon RD, Carne A, Emerson GW, Sullivan PA (1993) An exo-beta-(1,3)-glucanase of Candida albicans: purification of the enzyme and molecular cloning of the gene. J Gen Microbiol 139:325–334

    CAS  PubMed  Google Scholar 

  • Chang YC, Kwon-Chung KJ (1994) Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence. Mol Cell Biol 14:4912–4919

    CAS  PubMed  Google Scholar 

  • Chang YC, Penoyer LA, Kwon-Chung KJ (1996) The second capsule gene of Cryptococcus neoformans, CAP64, is essential for virulence. Infect Immun 64:1977–1983

    CAS  PubMed  Google Scholar 

  • Cho T, Sudoh M, Tanaka T, Nakashima Y, Chibana H, Kaminishi H (2001) Isolation and expression of a gene (CGR1) regulated during the yeast-hyphal transition in Candida albicans. Biochim Biophys Acta 1517:288–292

    Article  CAS  PubMed  Google Scholar 

  • Cormack BP, Bertram G, Egerton M, Gow NAR, Falkow S, Brown AJP (1997) Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans. Microbiology 143:303–311

    CAS  PubMed  Google Scholar 

  • Cormack BP, Ghori N, Falkow S (1999) An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 285:578–582

    Article  CAS  PubMed  Google Scholar 

  • Corner BE, Magee PT (1997) Candida pathogenesis: unravelling the threads of infection. Curr Biol 7:R691–R694

    CAS  PubMed  Google Scholar 

  • Cutler JE (1991) Putative virulence factors of Candida albicans. Annu Rev Microbiol 45:187–218

    PubMed  Google Scholar 

  • De Backer MD, Magee PT, Pla J (2000) Recent developments in molecular genetics of Candida albicans. Annu Rev Microbiol 54:463–498

    PubMed  Google Scholar 

  • De Backer MD, Nelissen B, Logghe M, Viaene J, Loonen I, Vandoninck S, Hoogt R de, Dewaele S, Simons FA, Verhasselt P, Vanhoof G, Contreras R, Luyten WH (2001) An antisense-based functional genomics approach for identification of genes critical for growth of Candida albicans. Nat Biotechnol 19:235–241

    Google Scholar 

  • De Bernardis F, Arancia S, Morelli L, Hube B, Sanglard D, Schafer W, Cassone A (1999) Evidence that members of the secretory aspartyl proteinase gene family, in particular SAP2, are virulence factors for Candida vaginitis. J Infect Dis 179:201–208

    Article  PubMed  Google Scholar 

  • Del Poeta M, Toffaletti DL, Rude TH, Sparks SD, Heitman J, Perfect JR (1999) Cryptococcus neoformans differential gene expression detected in vitro and in vivo with green fluorescent protein. Infect Immun 67:1812–1820

    PubMed  Google Scholar 

  • Diez-Orejas R, Molero G, Ríos I, Vázquez A, Gil C, Nombela C, Sánchez-Pérez M (1999) Low virulence of a morphological Candida albicans mutant. FEMS Microbiol Lett 176:311–319

    Article  CAS  PubMed  Google Scholar 

  • Diez-Orejas R, Molero G, Moro MA, Gil C, Nombela C, Sanchez-Perez M (2001) Two different NO-dependent mechanisms account for the low virulence of a non-mycelial morphological mutant of Candida albicans. Med Microbiol Immunol (Berl) 189:153–160

    Google Scholar 

  • D'Souza CA, Alspaugh JA, Yue C, Harashima T, Cox GM, Perfect JR, Heitman J (2001) Cyclic AMP-dependent protein kinase controls virulence of the fungal pathogen Cryptococcus neoformans. Mol Cell Biol 21:3179–3191

    Article  CAS  PubMed  Google Scholar 

  • Dupont B (1992) Antifungal therapy in AIDS patients. Churchill Livingstone, London

  • Edmond MB, Wallace SE, McClish DK, Pfaller MA, Jones RN, Wenzel RP (1999) Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin Infect Dis 29:239–244

    CAS  PubMed  Google Scholar 

  • Falkow S (1988) Molecular Koch's postulates applied to microbial pathogenicity. Rev Infect Dis 10 [Suppl 2]:S274-S276

  • Falkow S (1997) What is pathogen? ASM News 63:359–365

    Google Scholar 

  • Fling ME, Kopf J, Tamarkin A, Gorman JA, Smith HA, Koltin Y (1991) Analysis of a Candida albicans gene that encodes a novel mechanism for resistance to benomyl and methotrexate. Mol Gen Genet 227:318–329

    CAS  PubMed  Google Scholar 

  • Gaur NK, Klotz SA (1997) Expression, cloning, and characterization of a Candida albicans gene, ALA1, that confers adherence properties upon Saccharomyces cerevisiae for extracellular matrix proteins. Infect Immun 65:5289–5294

    CAS  PubMed  Google Scholar 

  • Gaur NK, Klotz SA, Henderson RL (1999) Overexpression of the Candida albicans ALA1 gene in Saccharomyces cerevisiae results in aggregation following attachment of yeast cells to extracellular matrix proteins, adherence properties similar to those of Candida albicans. Infect Immun 67:6040–6047

    CAS  PubMed  Google Scholar 

  • Geber A, Williamson PR, Rex JH, Sweeney EC, Bennett JE (1992) Cloning and characterization of a Candida albicans maltase gene involved in sucrose utilization. J Bacteriol 174:6992–6996

    CAS  PubMed  Google Scholar 

  • Georgopapadakou NH, Walsh TJ (1996) Antifungal agents: chemotherapeutic targets and immunological strategies. Antimicrob Agents Chemother 40:279–291

    CAS  PubMed  Google Scholar 

  • Gerami-Nejad M, Berman J, Gale CA (2001) Cassettes for PCR-mediated construction of green, yellow, and cyan fluorescent protein fusions in Candida albicans. Yeast 18:859–864

    Article  CAS  PubMed  Google Scholar 

  • González MM, Diez-Orejas R, Molero G, Alvarez AM, Pla J, Nombela C, Sánchez-Pérez M (1997) Phenotypic characterization of a Candida albicans strain deficient in its major exoglucanase. Microbiology 143:3023–3032

    PubMed  Google Scholar 

  • Gorlach JM, McDade HC, Perfect JR, Cox GM (2002) Antisense repression in Cryptococcus neoformans as a laboratory tool and potential antifungal strategy. Microbiology 148:213–219

    CAS  PubMed  Google Scholar 

  • Goshorn AK, Grindle SM, Scherer S (1992) Gene isolation by complementation in Candida albicans and applications to physical and genetic mapping. Infect Immun 60:876–884

    CAS  PubMed  Google Scholar 

  • Guerrant RL, Steiner TS, Lima AA, Bobak DA (1999) How intestinal bacteria cause disease. J Infect Dis 179 [Suppl 2]:S331–S337

    Google Scholar 

  • Guhad FA, Csank C, Jensen HE, Thomas DY, Whiteway M, Hau J (1998a) Reduced pathogenicity of a Candida albicans MAP kinase phosphatase (CPP1) mutant in the murine mastitis model. APMIS 106:1049–1055

    CAS  PubMed  Google Scholar 

  • Guhad FA, Jensen HE, Aalbaek B, Csank C, Mohamed O, Harcus D, Thomas DY, Whiteway M, Hau J (1998b) Mitogen-activated protein kinase-defective Candida albicans is avirulent in a novel model of localized murine candidiasis. FEMS Microbiol Lett 166:135–139

    Article  CAS  PubMed  Google Scholar 

  • Harrison TS (2000) Cryptococcus neoformans and cryptococcosis. J Infect 41:12–17

    Article  CAS  PubMed  Google Scholar 

  • Haynes K (2001) Virulence in Candida species. Trends Microbiol 9:591–596

    Article  CAS  PubMed  Google Scholar 

  • Hazen KC (1995) New and emerging yeast pathogens. Clin Microbiol Rev 8:462–478

    CAS  PubMed  Google Scholar 

  • Hensel M, Shea JE, Gleeson C, Jones MD, Dalton E, Holden DW (1995) Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400–403

    CAS  PubMed  Google Scholar 

  • Hogan LH, Klein BS, Levitz SM (1996) Virulence factors of medically important fungi. Clin Microbiol Rev 4:469–488

    Google Scholar 

  • Hoyer LL (2001) The ALS gene family of Candida albicans. Trends Microbiol 9:176–180

    Article  CAS  PubMed  Google Scholar 

  • Hoyer LL, Scherer S, Shatzman AR, Livi GP (1995) Candida albicans ALS1: domains related to a Saccharomyces cerevisiae sexual agglutinin separated by a repeating motif. Mol Microbiol 15:39–54

    CAS  PubMed  Google Scholar 

  • Hube B, Sanglard D, Odds FC, Hess D, Monod M, Schafer W, Brown AJ, Gow NAR (1997) Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect Immun 65:3529–3538

    CAS  PubMed  Google Scholar 

  • Janbon G, Himmelreich U, Moyrand F, Improvisi L, Dromer F (2001) Cas1p is a membrane protein necessary for the O-acetylation of the Cryptococcus neoformans capsular polysaccharide. Mol Microbiol 42:453–467

    Article  CAS  PubMed  Google Scholar 

  • Jong AY, Stins MF, Huang SH, Chen SH, Kim KS (2001) Traversal of Candida albicans across human blood–brain barrier in vitro. Infect Immun 69:4536–4544

    Article  CAS  PubMed  Google Scholar 

  • Kaposzta R, Marodi L, Hollinshead M, Gordon S, Silva RP da (1999) Rapid recruitment of late endosomes and lysosomes in mouse macrophages ingesting Candida albicans. J Cell Sci 112:3237–3248

    PubMed  Google Scholar 

  • Kirsch DR, Whitney RR (1991) Pathogenicity of Candida albicans auxotrophic mutants in experimental infections. Infect Immun 59:3297–3300

    CAS  PubMed  Google Scholar 

  • Kobayashi GS, Cutler JE (1998) Candida albicans hyphal formation and virulence: is there a clearly defined role ? Trends Microbiol 6:92–94

    CAS  PubMed  Google Scholar 

  • Köhler GA, White TC, Agabian N (1997) Overexpression of a cloned IMP dehydrogenase gene of Candida albicans confers resistance to the specific inhibitor mycophenolic acid. J Bacteriol 179:2331–2338

    CAS  PubMed  Google Scholar 

  • Kretschmar M, Felk A, Staib P, Schaller M, Hess D, Callapina M, Morschhauser J, Schafer W, Korting HC, Hof H, Hube B, Nichterlein T (2002) Individual acid aspartic proteinases (Saps) 1–6 of Candida albicans are not essential for invasion and colonization of the gastrointestinal tract in mice. Microb Pathog 32:61–70

    Article  CAS  PubMed  Google Scholar 

  • Kuster B, Mortensen P, Andersen JS, Mann M (2001) Mass spectrometry allows direct identification of proteins in large genomes. Proteomics 1:641–650

    Article  CAS  PubMed  Google Scholar 

  • La Valle R, Bromuro C, Ranucci L, Muller HM, Crisanti A, Cassone A (1995) Molecular cloning and expression of a 70-kilodalton heat shock protein of Candida albicans. Infect Immun 63:4039–4045

    PubMed  Google Scholar 

  • Latge JP (1999) Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 12:310–350

    PubMed  Google Scholar 

  • Lay J, Henry LK, Clifford J, Koltin Y, Bulawa CE, Becker JM (1998) Altered expression of selectable marker URA3 in gene-disrupted Candida albicans strains complicates interpretation of virulence studies. Infect Immun 66:5301–5306

    CAS  PubMed  Google Scholar 

  • Lengeler KB, Davidson RC, D'Souza C, Harashima T, Shen WC, Wang P, Pan X, Waugh M, Heitman J (2000) Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64:746–785

    CAS  PubMed  Google Scholar 

  • Leuker CE, Hahn AM, Ernst JF (1992) β-Galactosidase of Kluyveromyces lactis (Lac4p) as reporter of gene expression in Candida albicans and C. tropicalis. Mol Gen Genet 235:235–241

    Google Scholar 

  • Leuker CE, Sonneborn A, Delbruck S, Ernst JF (1997) Sequence and promoter regulation of the PCK1 gene encoding phosphoenolpyruvate carboxykinase of the fungal pathogen Candida albicans. Gene 192:235–240

    Article  CAS  PubMed  Google Scholar 

  • Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949

    CAS  PubMed  Google Scholar 

  • Lorenz MC, Fink GR (2001) The glyoxylate cycle is required for fungal virulence. Nature 412:83–86

    Article  CAS  PubMed  Google Scholar 

  • Lorenz MC, Fink GR (2002) Life and death in a macrophage: role of the glyoxylate cycle in virulence. Eukaryot Cell 1:657–662

    Article  CAS  PubMed  Google Scholar 

  • Losberger C, Ernst JF (1989) Sequence of the Candida albicans gene encoding actin. Nucleic Acids Res 17:9488

    CAS  PubMed  Google Scholar 

  • Madani ND, Malloy PJ, Rodríguez Pombo P, Krishnan AV, Feldman D (1994) Candida albicans estrogen-binding protein gene encodes an oxidoreductase that is inhibited by estradiol. Proc Natl Acad Sci USA 91:922–926

    CAS  PubMed  Google Scholar 

  • Magee PT (1998) Which came first: the hypha or the yeast? Science 277:52–53

    Article  Google Scholar 

  • Mahan MJ, Slauch JM, Mekalanos JJ (1993) Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259:686–688

    CAS  PubMed  Google Scholar 

  • Mahan MJ, Tobias JW, Slauch JM, Hanna PC, Collier RJ, Mekalanos JJ (1995) Antibiotic-based selection for bacterial genes that are specifically induced during infection of a host. Proc Natl Acad Sci USA 92:669–673

    CAS  PubMed  Google Scholar 

  • Mahan MJ, Heithoff DM, Sinsheimer RL, Low DA (2000) Assessment of bacterial pathogenesis by analysis of gene expression in the host. Annu Rev Genet 34:139–164

    Article  CAS  PubMed  Google Scholar 

  • Maier FJ, Schafer W (1999) Mutagenesis via insertional- or restriction enzyme-mediated-integration (REMI) as a tool to tag pathogenicity related genes in plant pathogenic fungi. Biol Chem 380:855–864

    CAS  PubMed  Google Scholar 

  • Malloy PJ, Zhao X, Madani ND, Feldman D (1993) Cloning and expression of the gene from Candida albicans that encodes a high-affinity corticosteroid-binding protein. Proc Natl Acad Sci USA 90:1902–1906

    CAS  PubMed  Google Scholar 

  • Mann M, Hendrickson RC, Pandey A (2001) Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 70:437–473

    CAS  PubMed  Google Scholar 

  • McCusker JH, Clemons KV, Stevens DA, Davis RW (1994) Saccharomyces cerevisiae virulence phenotype as determined with CD-1 mice is associated with the ability to grow at 42 °C and form pseudohyphae. Infect Immun 62:5447–5455

    CAS  PubMed  Google Scholar 

  • Morrow B, Srikantha T, Anderson J, Soll DR (1993) Coordinate regulation of two opaque-phase-specific genes during white-opaque switching in Candida albicans. Infect Immun 61:1823–1828

    CAS  PubMed  Google Scholar 

  • Navarro-García F, Sánchez M, Nombela C, Pla J (2001) Virulence genes in the pathogenic yeast Candida albicans. FEMS Microbiol Rev 25:245–268

    PubMed  Google Scholar 

  • Negredo A, Monteoliva L, Gil C, Pla J, Nombela C (1997) Cloning, analysis and one-step disruption of the ARG5,6 gene of Candida albicans. Microbiology 143:297–302

    CAS  PubMed  Google Scholar 

  • Nelson RT, Hua J, Pryor B, Lodge JK (2001) Identification of virulence mutants of the fungal pathogen Cryptococcus neoformans using signature-tagged mutagenesis. Genetics 157:935–947

    CAS  PubMed  Google Scholar 

  • Niimi M, Cannon RD, Monk BC (1999) Candida albicans pathogenicity: a proteomic perspective. Electrophoresis 20:2299–2308

    Article  CAS  PubMed  Google Scholar 

  • Odds FC (1988) Candida and candidosis, 2nd edn. Baillière Tindall, London

  • Odds FC (1994) Candida species and virulence. ASM News 60:313–318

    Google Scholar 

  • Odom A, Muir S, Lim E, Toffaletti DL, Perfect J, Heitman J (1997) Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J 16:2576–2589

    Article  CAS  PubMed  Google Scholar 

  • Perfect JR (1996) Fungal virulence genes as targets for antifungal chemotherapy. Antimicrob Agents Chemother 40:1577–1583

    CAS  PubMed  Google Scholar 

  • Perfect JR, Toffaletti DL, Rude TH (1993) The gene encoding phosphoribosylaminoimidazole carboxylase (ADE2) is essential for growth of Cryptococcus neoformans in cerebrospinal fluid. Infect Immun 61:4446–4451

    CAS  PubMed  Google Scholar 

  • Pfaller MA, Jones RN, Doern GV, Sader HS, Messer SA, Houston A, Coffman S, Hollis RJ (2000) Bloodstream infections due to Candida species: SENTRY antimicrobial surveillance program in North America and Latin America, 1997–1998. Antimicrob Agents Chemother 44:747–751

    CAS  PubMed  Google Scholar 

  • Pitarch A, Diez-Orejas R, Molero G, Pardo M, Sanchez M, Gil C, Nombela C (2001) Analysis of the serologic response to systemic Candida albicans infection in a murine model. Proteomics 1:550–559

    Article  CAS  PubMed  Google Scholar 

  • Pla J, Pérez-Díaz RM, Navarro-García F, Sánchez M, Nombela C (1995) Cloning of the Candida albicans HIS1 gene by direct complementation of a C. albicans histidine auxotroph using an improved double-ARS shuttle vector. Gene 165:115–120

    CAS  PubMed  Google Scholar 

  • Pla J, Gil C, Monteoliva L, Navarro-García F, Sánchez M, Nombela C (1996) Understanding Candida albicans at the molecular level. Yeast 12:1677–1702

    CAS  PubMed  Google Scholar 

  • Pomés R, Gil C, Nombela C (1985) Genetic analysis of Candida albicans morphological mutants. J Gen Microbiol 131:2107–2113

    PubMed  Google Scholar 

  • Retallack DM, Deepe GS Jr, Woods JP (2000) Applying in vivo expression technology (IVET) to the fungal pathogen Histoplasma capsulatum. Microb Pathog 28:169–182

    Article  CAS  PubMed  Google Scholar 

  • Rex JH, Rinaldi MG, Pfaller MA (1995) Resistance of Candida species to fluconazole. Antimicrob Agents Chemother 1:1–8

    Google Scholar 

  • Riggle PJ, Kumamoto CA (1998) Genetic analysis in fungi using restriction-enzyme-mediated integration. Curr Opin Microbiol 1:395–399

    Article  CAS  PubMed  Google Scholar 

  • Riggle PJ, Slobodkin IV, Brown DH Jr, Hanson MP, Volkert TL, Kumamoto CA (1997) Two transcripts, differing at their 3' ends, are produced from the Candida albicans SEC14 gene. Microbiology 143:3527–3535

    CAS  PubMed  Google Scholar 

  • Roemer TD, et al (2002) Large-scale essential gene identification in Candida albicans and application to antifungal drug discovery .In: ASM (ed) 6th ASM conference on Candida and candidosis. ASM, Tampa, Fla., p. 35

  • Ryley JF, Ryley NG (1990) Candida albicans—do mycelia matter? J Med Vet Mycol 28:225–239

    CAS  PubMed  Google Scholar 

  • Salas SD, Bennett JE, Kwon-Chung KJ, Perfect JR, Williamson PR (1996) Effect of the laccase gene CNLAC1, on virulence of Cryptococcus neoformans. J Exp Med 184:377–386

    CAS  PubMed  Google Scholar 

  • Sanglard D, Kuchler K, Ischer F, Pagani JL, Monod M, Bille J (1995) Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother 39:2378–2386

    CAS  PubMed  Google Scholar 

  • Santos MA, Tuite MF (1995) The CUG codon is decoded in vivo as serine and not leucine in Candida albicans. Nucleic Acids Res 23:1481–1486

    CAS  PubMed  Google Scholar 

  • Saporito-Irwin SM, Birse CE, Sypherd PS, Fonzi WA (1995) PHR1, a pH-regulated gene of Candida albicans, is required for morphogenesis. Mol Cell Biol 15:601–613

    CAS  PubMed  Google Scholar 

  • Sentandreu M, Elorza MV, Valentin E, Sentandreu R, Gozalbo D (1995) Cloning of cDNAs coding for Candida albicans cell surface proteins. J Med Vet Mycol 33:105–111

    CAS  PubMed  Google Scholar 

  • Sentandreu M, Nieto A, Iborra A, Elorza MV, Pontón J, Fonzi WA, Sentandreu R (1997) Cloning and characterization of CSP37, a novel gene encoding a putative membrane protein of Candida albicans. J Bacteriol 179:4654–4663

    CAS  PubMed  Google Scholar 

  • Sharkey LL, McNemar MD, Saporito-Irwin SM, Sypherd PS, Fonzi WA (1999) HWP1 functions in the morphological development of Candida albicans downstream of EFG1, TUP1, and RBF1. J Bacteriol 181:5273–5279

    CAS  PubMed  Google Scholar 

  • Slauch JM, Mahan MJ, Mekalanos JJ (1994) In vivo expression technology for selection of bacterial genes specifically induced in host tissues. Methods Enzymol 235:481–492

    CAS  PubMed  Google Scholar 

  • Soll DR (1990) Dimorphism and high-frequency switching in Candida albicans. CRC Press, Boca Raton, pp 147–176

  • Srikantha T, Soll DR (1993) A white-specific gene in the white-opaque switching system of Candida albicans. Gene 131:53–60

    CAS  PubMed  Google Scholar 

  • Srikantha T, Klapach A, Lorenz WW, Tsai LK, Laughlin LA, Gorman JA, Soll DR (1996) The sea pansy Renilla reniformis luciferase serves as a sensitive bioluminescent reporter for differential gene expression in Candida albicans. J Bacteriol 178:121–129

    CAS  PubMed  Google Scholar 

  • Staab JF, Sundstrom P (1998) Genetic organization and sequence analysis of the hypha-specific cell wall protein gene HWP1 of Candida albicans. Yeast 14:681–686

    Article  CAS  PubMed  Google Scholar 

  • Staab JF, Ferrer CA, Sundstrom P (1996) Developmental expression of a tandemly repeated, proline- and glutamine-rich amino acid motif on hyphal surfaces on Candida albicans. J Biol Chem 271:6298–6305

    Article  CAS  PubMed  Google Scholar 

  • Staab JF, Bradway SD, Fidel PL, Sundstrom P (1999) Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283:1535–1538

    Article  CAS  PubMed  Google Scholar 

  • Staib P, Kretschmar M, Nichterlein T, Kohler G, Michel S, Hof H, Hacker J, Morschhäuser J (1999) Host-induced, stage-specific virulence gene activation in Candida albicans during infection. Mol Microbiol 32:533–546

    CAS  PubMed  Google Scholar 

  • Staib P, Kretschmar M, Nichterlein T, Hof H, Morschhäuser J (2000) Differential activation of a Candida albicans virulence gene family during infection. Proc Natl Acad Sci USA 97:6102–6107

    Article  CAS  PubMed  Google Scholar 

  • Staib P, Moran GP, Sullivan DJ, Coleman DC, Morschhauser J (2001) Isogenic strain construction and gene targeting in Candida dubliniensis. J Bacteriol 183:2859–2865

    Article  CAS  PubMed  Google Scholar 

  • Still CN, Jacobson ES (1983) Recombinational mapping of capsule mutations in Cryptococcus neoformans. J Bacteriol 156:460–462

    CAS  PubMed  Google Scholar 

  • Stoldt VR, Sonneborn A, Leuker CE, Ernst JF (1997) Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J 16:1982–1991

    CAS  PubMed  Google Scholar 

  • Sundstrom P (2002) Adhesion in Candida spp. Cell Microbiol 4:461–469

    Article  CAS  PubMed  Google Scholar 

  • Swoboda RK, Broadbent ID, Bertram G, Budge S, Gooday GW, Gow NAR, Brown AJP (1995) Structure and regulation of a Candida albicans RP10 gene which encodes an immunogenic protein homologous to Saccharomyces cerevisiae ribosomal protein 10. J Bacteriol 177:1239–1246

    CAS  PubMed  Google Scholar 

  • Talibi D, Raymond M (1999) Isolation of a putative Candida albicans transcriptional regulator involved in pleiotropic drug resistance by functional complementation of a pdr1 pdr3 mutation in Saccharomyces cerevisiae. J Bacteriol 181:231–240

    CAS  PubMed  Google Scholar 

  • Tzung KW, Williams RM, Scherer S, Federspiel N, Jones T, Hansen N, Bivolarevic V, Huizar L, Komp C, Surzycki R, Tamse R, Davis RW, Agabian N (2001) Genomic evidence for a complete sexual cycle in Candida albicans. Proc Natl Acad Sci USA 98:3249–3253

    CAS  PubMed  Google Scholar 

  • Uhl MA, Johnson AD (2001) Development of Streptococcus thermophilus lacZ as a reporter gene for Candida albicans. Microbiology 147:1189–1195

    Google Scholar 

  • Vazquez-Torres A, Balish E (1997) Macrophages in resistance to candidiasis. Microbiol Mol Biol Rev 61:170–192

    PubMed  Google Scholar 

  • Wang P, Heitman J (1999) Signal transduction cascades regulating mating, filamentation, and virulence in Cryptococcus neoformans. Curr Opin Microbiol 2:358–362

    Article  CAS  PubMed  Google Scholar 

  • Wasylnka JA, Moore MM (2002) Uptake of Aspergillus fumigatus conidia by phagocytic and nonphagocytic cells in vitro: quantitation using strains expressing green fluorescent protein. Infect Immun 70:3156–3163

    Article  CAS  PubMed  Google Scholar 

  • Weide MR, Ernst JF (1999) Caco-2 monolayer as a model for transepithelial migration of the fungal pathogen Candida albicans. Mycoses 42 [Suppl 2]::61–67

  • Yaver DS, Lamsa M, Munds R, Brown SH, Otani S, Franssen L, Johnstone JA, Brody H (2000) Using DNA-tagged mutagenesis to improve heterologous protein production in Aspergillus oryzae. Fungal Genet Biol 29:28-37

    Article  CAS  PubMed  Google Scholar 

  • Zink S, Nass T, Rosen P, Ernst JF (1996) Migration of the fungal pathogen Candida albicans across endothelial monolayers. Infect Immun 64:5085–5091

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements.

B.E. and E.R. are recipients of fellowships from U.C.M. and M.E.C., respectively. We thank R. Cannon for critical reading of the manuscript and several suggestions for its improvement. Work in our laboratory is supported by Grant BIO2000-0729 and the Proyecto Estratégico de la Comunidad de Madrid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Pla.

Additional information

Communicated by J. Heitman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso-Monge, R., Navarro-García, F., Román, E. et al. Strategies for the identification of virulence determinants in human pathogenic fungi. Curr Genet 42, 301–312 (2003). https://doi.org/10.1007/s00294-002-0364-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-002-0364-1

Keywords.

Navigation