Skip to main content

Identification of Fungicide Targets in Pathogenic Fungi

  • Chapter
  • First Online:
Physiology and Genetics

Part of the book series: The Mycota ((MYCOTA,volume 15))

Abstract

Currently deployed fungicides cover a narrow range of molecular targets. With the threat of resistance development, there is a pressing need to identify novel targets for fungicides. This chapter will review the molecular targets currently known for antifungal compounds and discuss the potential that exists for the discovery of new fungicide targets. Suggestions as to the future directions that the fungicide target discovery field might take and strategies for increasing the chances of the durability of antifungals are discussed together with predictions as to how emerging technologies will assist in target identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anaissie EJ, McGinnis MR, Pfaller MA (2009) Clinical mycology, 2nd edn. Churchill Livingstone

    Google Scholar 

  • Arazoe T, Miyoshi K, Yamato T, Ogawa T, Ohsato S, Arie T, Kuwata S (2015) Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnol Bioeng 112:2543–2549. https://doi.org/10.1002/bit.25662

    Article  CAS  PubMed  Google Scholar 

  • Avram S, Funar-Timofei S, Borota A, Chennamaneni SR, Manchala AK, Muresan S (2014) Quantitative estimation of pesticide-likeness for agrochemical discovery. J Cheminform 6:42 eCollection

    Google Scholar 

  • Baker LG, Specht CA, Lodge JK (2011) Cell wall chitosan is necessary for virulence in the opportunistic pathogen Cryptococcus neoformans. Eukaryot Cell 10:1264–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balhadere PV, Foster AJ, Talbot NJ (1999) Identification of pathogenicity mutants of the rice blast fungus Magnaporthe grisea using insertional mutagenesis. Mol Plant Microbe Interact 12:129–142

    Article  CAS  Google Scholar 

  • Bantscheff M, Drewes G (2012) Chemoproteomic approaches to drug target identification and drug profiling. Bioorg Med Chem 20:1973–1978

    Article  CAS  PubMed  Google Scholar 

  • Bao Z, Xiao H, Liang J, Zhang L, Xiong X, Sun N, Si T, Zhao H (2015) Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth Biol 4:585–594

    Article  CAS  PubMed  Google Scholar 

  • Bastidas RJ, Reedy JL, Morales-Johansson H, Heitman J, Cardenas ME (2008) Signaling cascades as drug targets in model and pathogenic fungi. Curr Opin Investig Drugs 9:856–864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blum M, Boehler M, Randall E, Young V, Csukai M, Kraus S, Moulin F, Scalliet G, Avrova AO, Whisson SC, Fonne-Pfister R (2010) Mandipropamid targets the cellulose synthase-like PiCesA3 to inhibit cell wall biosynthesis in the oomycete plant pathogen, Phytophthora infestans. Mol Plant Pathol 11:227–243

    Article  CAS  PubMed  Google Scholar 

  • Bowman SM, Free SJ (2006) The structure and synthesis of the fungal cell wall. BioEssays 28:799–808

    Article  PubMed  Google Scholar 

  • Bunnage ME (2011) Getting pharmaceutical R&D back on target. Nat Chem Biol 7:335–339

    Article  CAS  PubMed  Google Scholar 

  • Butcher RA, Schreiber SL (2006) A microarray-based protocol for monitoring the growth of yeast overexpression strains. Nat Protoc 1:569–576

    Article  CAS  PubMed  Google Scholar 

  • Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66:447–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanclud E, Kisiala A, Emery NR, Chalvon V, Ducasse A, Romiti-Michel C, Gravot A, Kroj T, Morel JB (2016) Cytokinin production by the rice blast fungus is a pivotal requirement for full virulence. PLoS Pathog 12:e1005457. https://doi.org/10.1371/journal.ppat.1005457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chavez-Dozal AA, Bernardo SM, Rane HS, Herrera G, Kulkarny V, Wagener J, Cunningham I, Brand AC, Gow NA, Lee SA (2015) The Candida albicans exocyst subunit Sec6 contributes to cell wall integrity and is a determinant of hyphal branching. Eukaryot Cell 14:684–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zuo R, Zhu Q, Sun Y, Li M, Dong Y, Ru Y, Zhang H, Zheng X, Zhang Z (2014) MoLys2 is necessary for growth, conidiogenesis, lysine biosynthesis, and pathogenicity in Magnaporthe oryzae. Fungal Genet Biol 67:51–57

    Article  CAS  PubMed  Google Scholar 

  • Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff S (2004) Efficient discovery of DNA polymorphisms in natural populations by ecotilling. Plant J 37:778–786

    Article  CAS  PubMed  Google Scholar 

  • Cornet M, Gaillardin C (2014) pH signaling in human fungal pathogens: a new target for antifungal strategies. Eukaryot Cell 13:342–352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Csermely P, Korcsmáros T, Kiss HJ, London G, Nussinov R (2013) Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol Ther 138:333–408. https://doi.org/10.1016/j.pharmthera.2013.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Z, Wang Y, Lei N, Wang K, Zhu T (2013) Botrytis cinerea chitin synthase BcChsVI is required for normal growth and pathogenicity. Curr Genet 59:119–128

    Article  CAS  PubMed  Google Scholar 

  • De Pascale G, Nazi I, Harrison PH, Wright GD (2011) β-lactone natural products and derivatives inactivate homoserine transacetylase, a target for antimicrobial agents. J Antibiot (Tokyo) 64:483–487

    Article  CAS  Google Scholar 

  • Deising HB, Reimann S, Pascholati SF (2008) Mechanisms and significance of fungicide resistance. Braz J Microbiol 39:286–295

    Article  PubMed  PubMed Central  Google Scholar 

  • DeZwaan TM, Carroll AM, Valent B, Sweigard JA (1999) Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell 11:2013–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41:4336–4343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietl AM, Amich J, Leal S, Beckmann N, Binder U, Beilhack A, Pearlman E, Haas H (2016) Histidine biosynthesis plays a crucial role in metal homeostasis and virulence of Aspergillus fumigatus. Virulence 7:465–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong S, Yin W, Kong G, Yang X, Qutob D, Chen Q, Kale SD, Sui Y, Zhang Z, Dou D, Zheng X, Gijzen M, Tyler BM, Wang Y (2011) Phytophthora sojae avirulence effector Avr3b is a secreted NADH and ADP-ribose pyrophosphorylase that modulates plant immunity. PLoS Pathog 7:e1002353. https://doi.org/10.1371/journal.ppat.1002353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drewes M, Tietjen K, Sparks TC (2012) High-throughput screening in agrochemical research. In: Jeschke P, Kramer W, Schirmer U, Witschel M (eds) Modern methods in crop protection research, 1st edn. Wiley-VCH, New York, pp 1–20

    Google Scholar 

  • Drews J, Ryser ST (1996) An innovation deficit in the pharmaceutical industry. Drug Inf J 30:97–108

    Article  Google Scholar 

  • Du Y, Mpina MH, Birch PR, Bouwmeester K, Govers F (2015) Phytophthora Infestans RXLR effector AVR1 interacts with exocyst component Sec5 to manipulate plant immunity. Plant Physiol 169:1975–1990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards AM, Isserlin R, Bader GD, Frye SV, Willson TM, FH Y (2011) Too many roads not taken. Nature 470:163–165

    Article  CAS  PubMed  Google Scholar 

  • Ehler LE (2006) Integrated pest management (IPM): definition, historical development and implementation, and the other IPM. Pest Manag Sci 62:787–789

    Article  CAS  PubMed  Google Scholar 

  • Eisenman HC, Casadevall A (2012) Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol 93:931–940. https://doi.org/10.1007/s00253-011-3777-2

    Article  CAS  PubMed  Google Scholar 

  • Eisenman HC, Frases S, Nicola AM, Rodrigues ML, Casadevall A (2009) Vesicle-associated melanisation in Cryptococcus neoformans. Microbiology 155:3860–3867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonović M, Bogyo M (2008) Activity-based probes as a tool for functional proteomic analysis of proteases. Expert Rev Proteomics 5:721–730. https://doi.org/10.1586/14789450.5.5.721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Foster AJ, Jenkinson JM, Talbot NJ (2003) Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. EMBO J 22:225–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fradin C, Bernardes ES, Jouault T (2015) Candida albicans phospholipomannan: a sweet spot for controlling host response/inflammation. Semin Immunopathol 37:123–130

    Article  CAS  PubMed  Google Scholar 

  • Franzen AJ, Cunha MM, Miranda K, Hentschel J, Plattner H, da Silva MB, Salgado CG, de Souza W, Rozental S (2008) Ultrastructural characterization of melanosomes of the human pathogenic fungus Fonsecaea pedrosoi. J Struct Biol 162:75–84

    Article  CAS  PubMed  Google Scholar 

  • Fritz R, Lanen C, Colas V, Leroux P (1997) Inhibition of methionine biosynthesis in Botrytis cinerea by the anilinopyrimidine fungicide pyrimethanil. Pestic Sci 49:40–46

    Article  CAS  Google Scholar 

  • Fu J, Wu J, Jiang J, Wang Z, Ma Z (2013) Cystathionine gamma-synthase is essential for methionine biosynthesis in Fusarium graminearum. Fungal Biol 117:13–21. https://doi.org/10.1016/j.funbio.2012.11.001

    Article  CAS  PubMed  Google Scholar 

  • Fujikawa T, Sakaguchi A, Nishizawa Y, Kouzai Y, Minami E, Yano S, Koga H, Meshi T, Nishimura M (2012) Surface α-1,3-glucan facilitates fungal stealth infection by interfering with innate immunity in plants. PLoS Pathog 8:e1002882. https://doi.org/10.1371/journal.ppat.1002882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller KK, Chen S, Loros JJ, Dunlap JC (2015) Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus. Eukaryot Cell 14:1073–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giaever G, Shoemaker DD, Jones TW, Liang H, Winzeler EA, Astromoff A, Davis RW (1999) Genomic profiling of drug sensitivities via induced haploinsufficiency. Nat Genet 21:278–283

    Article  CAS  PubMed  Google Scholar 

  • Giraldo MC, Dagdas YF, Gupta YK, Mentlak TA, Yi M, Martinez-Rocha AL, Saitoh H, Terauchi R, Talbot NJ, Valent B (2012) Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nat Commun 4:1996. https://doi.org/10.1038/ncomms2996

    Google Scholar 

  • Goddijn OJ, Verwoerd TC, Voogd E, Krutwagen RW, de Graaf PT, van Dun K, Poels J, Ponstein AS, Damm B, Pen J (1997) Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiol 113:181–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Górska A, Sloderbach A, MarszaÅ‚Å‚ MP (2014) Siderophore-drug complexes: potential medicinal applications of the ‘Trojan horse’ strategy. Trends Pharmacol Sci 35:442–449

    Article  PubMed  CAS  Google Scholar 

  • Gravelat FN, Beauvais A, Liu H, Lee MJ, Snarr BD, Chen D, Xu W, Kravtsov I, Hoareau CM, Vanier G, Urb M, Campoli P, Al Abdallah Q, Lehoux M, Chabot JC, Ouimet MC, Baptista SD, Fritz JH, Nierman WC, Latgé JP, Mitchell AP, Filler SG, Fontaine T, Sheppard DC (2013) Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal β-glucan from the immune system. PLoS Pathog 9:e1003575. https://doi.org/10.1371/journal.ppat.1003575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenshields DL, Liu G, Feng J, Selvaraj G, Wei Y (2007) The siderophore biosynthetic gene SID1, but not the ferroxidase gene FET3, is required for full Fusarium graminearum virulence. Mol Plant Pathol 8:411–421. https://doi.org/10.1111/j.1364-3703.2007.00401.x

    Article  CAS  PubMed  Google Scholar 

  • Guimarães LL, Toledo MS, Ferreira FAS, Straus AH, Takahashi HK (2014) Structural diversity and biological significance of glycosphingolipids in pathogenic and opportunistic fungi. Front Cell Infect Microbiol 4:138. https://doi.org/10.3389/fcimb.2014.00138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamada T, Asanagi M, Satozawa T, Araki N, Banba S, Higashimura N, Akase T, Hirase K (2014) Action mechanism of the novel rice blast fungicide tolprocarb distinct from that of conventional melanin biosynthesis inhibitors. J Pest Sci 39:152–158

    Article  CAS  Google Scholar 

  • Hao G, Dong Q, Yang G (2011) A comparative study on the constitutive properties of marketed pesticides. Mol Inform 30:614–622. https://doi.org/10.1002/minf.201100020

    Article  CAS  PubMed  Google Scholar 

  • Heider MR, Munson M (2012) Exorcising the exocyst complex. Traffic 13:898–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hewitt G (2000) New modes of action of fungicides. Pest Outlook 11:28–32. https://doi.org/10.1039/B006311H

    Article  CAS  Google Scholar 

  • Hissen AH, Wan AN, Warwas ML, Pinto LJ, Moore MM (2005) The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding L-ornithine N5-oxygenase, is required for virulence. Infect Immun 73:5493–5503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang G (2012) Regulation of phenotypic transitions in the fungal pathogen Candida albicans. Virulence 3:251–261

    Article  PubMed  PubMed Central  Google Scholar 

  • Hube B, Sanglard D, Odds FC, Hess D, Monod M, Schäfer W, Brown AJ, Gow NA (1997) Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect Immun 65:3529–3538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang LH, Seth E, Gilmore SA, Sil A (2008) SRE1 regulates iron-dependent and -independent pathways in the fungal pathogen Histoplasma capsulatum. Eukaryot Cell 11:16–25

    Article  CAS  Google Scholar 

  • Jacob S, Schüffler A, Thines E (2016) Hog1p activation by marasmic acid through inhibition of the histidine kinase Sln1p. Pest Manag Sci 72:1268–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jampillek J (2016) Potential of agricultural fungicides for antifungal drug discovery. Expert Opin Drug Discov 11:1–9. https://doi.org/10.1517/17460441.2016.1110142

    Article  CAS  Google Scholar 

  • JastrzÄ™bowska K, Gabriel I (2015) Inhibitors of amino acids biosynthesis as antifungal agents. Amino Acids 47:227–249

    Article  PubMed  CAS  Google Scholar 

  • Kong L-A, Yang J, Li G-T, Qi L-L, Zhang Y-J, Wang C-F et al (2012) Different chitin synthase genes are required for various developmental and plant infection processes in the rice blast fungus Magnaporthe oryzae. PLoS Pathog 8:e1002526. https://doi.org/10.1371/journal.ppat.1002526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostensis E (2006) G proteins in drug screening: from analysis of receptor-G protein specificity to manipulation of GPCR-mediated signalling pathways. Curr Pharm Des 12:1703–1715

    Article  Google Scholar 

  • Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA (2003) Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 38:143–158

    Article  CAS  PubMed  Google Scholar 

  • Leadbetter A (2015) Recent developments and challenges in chemical disease control. Plant Protect Sci 51:163–169

    Article  Google Scholar 

  • Leal SM Jr, Roy S, Vareechon C, Sd C, Clark H, Lopez-Berges MS, Di Pietro A, Schrettl M, Beckmann N, Redl B, Haas H, Pearlman E (2013) Targeting iron acquisition blocks infection with the fungal pathogens Aspergillus fumigatus and Fusarium oxysporum. PLoS Pathog 9:e1003436. https://doi.org/10.1371/journal.ppat.1003436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Gustafson G, Skamnioti P, Baloch R, Gurr S (2008) Host perception and signal transduction studies in wild-type Blumeria graminis f. Sp. hordei and a quinoxyfen-resistant mutant implicate quinoxyfen in the inhibition of serine esterase activity. Pest Manag Sci 64:544–555. https://doi.org/10.1002/ps.1538

    Article  CAS  PubMed  Google Scholar 

  • Lelandais G, Tanty V, Geneix C, Etchebest C, Jacq C, Devaux F (2008) Genome adaptation to chemical stress: clues from comparative transcriptomics in Saccharomyces cerevisiae and Candida glabrata. Genome Biol 9:R164. https://doi.org/10.1186/gb-2008-9-11-r164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lenardon MD, Munro CA, Gow NAR (2010) Chitin synthesis and fungal pathogenesis. Curr Opin Micobiol 13:416–423. https://doi.org/10.1016/j.mib.2010.05.002

    Article  CAS  Google Scholar 

  • Li RK, Rinaldi MG (1999) In vitro antifungal activity of nikkomycin Z in combination with fluconazole or itraconazole. Antimicrob Agents Chemother 43:1401–1405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XH, Gao HM, Xu F, Lu JP, Devenish RJ, Lin FC (2012) Autophagy vitalizes the pathogenicity of pathogenic fungi. Autophagy 8:1415–1425. https://doi.org/10.4161/auto.21274

    Article  CAS  PubMed  Google Scholar 

  • Lyu X, Shen C, Fu Y, Xie J, Jiang D, Li G, Cheng J (2016) A small secreted virulence related protein is essential for the necrotrophic interactions of Sclerotinia sclerotiorum with its host plants. PLoS Pathog 12:e1005435. https://doi.org/10.1371/journal.ppat.1005435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maidan MM, De Rop L, Relloso M, Diez-Orejas R, Thevelein JM, Van Dijck P (2008) Combined inactivation of the Candida albicans GPR1 and TPS2 genes results in avirulence in a mouse model for systemic infection. Infect Immun 76:1686–1694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mans R, van Rossum HM, Wijsman M, Backx A, Kuijpers NG, van den Broek M, Daran-Lapujade P, Pronk JT, van Maris AJ, Daran JM (2015) CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res 15:pii: fov004. https://doi.org/10.1093/femsyr/fov004

    Article  CAS  Google Scholar 

  • Marx F, Binder U, Leiter E, Pócsi I (2008) The Penicillium chrysogenum antifungal protein PAF, a promising tool for the development of new antifungal therapies and fungal cell biology studies. Cell Mol Life Sci 65:445–454

    Article  CAS  PubMed  Google Scholar 

  • McDougall P (2016) The cost of new agrochemical product discovery, development and registration in 1995 2000 2005 and 2010 to 2014. http://www.croplifeamerica.org/wp-content/uploads/2016/04/Phillips-McDougall-Final-Report_4.6.16.pdf. Cited 17 May 2016

  • Moellering RE, Cravatt BF (2012) How chemo proteomics can enable drug discovery and development. Chem Biol 19:11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mor V, Rella A, Farnoud AM, Singh A, Munshi M, Bryan A, Naseem S, Konopka JB, Ojima I, Bullesbach E, Ashbaugh A, Linke MJ, Cushion M, Collins M, Ananthula HK, Sallans L, Desai PB, Wiederhold NP, Fothergill AW, Kirkpatrick WR, Patterson T, Wong LH, Sinha S, Giaever G, Nislow C, Flaherty P, Pan X, Cesar GV, de Melo Tavares P, Frases S, Miranda K, Rodrigues ML, Luberto C, Nimrichter L, Del Poeta M (2015) Identification of a new class of antifungals targeting the synthesis of fungal sphingolipids. MBio 6:e00647. https://doi.org/10.1128/mBio.00647-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munos BH, Chin WW (2011) How to revive breakthrough innovation in the pharmaceutical industry. Sci Transl Med 3:89cm16. https://doi.org/10.1126/scitranslmed.3002273

    Article  PubMed  Google Scholar 

  • Munro CA, Winter K, Buchan A, Henry K, Becker JM, Brown AJ, Bulawa CE, Gow NA (2001) Chs1 of Candida albicans is an essential chitin synthase required for synthesis of the septum and for cell integrity. Mol Microbiol 39:1414–1426

    Article  CAS  PubMed  Google Scholar 

  • Myung K (2015) Can agricultural fungicides accelerate the discovery of human antifungal drugs? Drug Discov Today 20:7–10. https://doi.org/10.1016/j.drudis.2014.08.010

    Article  PubMed  Google Scholar 

  • Ngamskulrungroj P, Himmelreich U, Breger JA, Wilson C, Chayakulkeeree M, Krockenberger MB, Malik R, Daniel HM, Toffaletti D, Djordjevic JT, Mylonakis E, Meyer W, Perfect JR (2009) The trehalose synthesis pathway is an integral part of the virulence composite for Cryptococcus gattii. Infect Immun 77:4584–4596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen QB, Itoh K, Van Vu B, Tosa Y, Nakayashiki H (2011) Simultaneous silencing of endo-β-1,4 xylanase genes reveals their roles in the virulence of Magnaporthe oryzae. Mol Microbiol 81:1008–1019. https://doi.org/10.1111/j.1365-2958.2011.07746.x

    Article  CAS  PubMed  Google Scholar 

  • Noble SM, Johnson AD (2005) Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans. Eukaryot Cell 4:298–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noble SM, French S, Kohn LA, Chen V, Johnson AD (2010) Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat Genet 42:590–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norton TS, Fortwendel JR (2014) Control of Ras-mediated signaling in Aspergillus fumigatus. Mycopathologia 178:325–330. https://doi.org/10.1007/s11046-014-9765-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nosanchuk JD, Stark RE, Casadevall A (2015) Fungal melanin: what do we know about structure? Front Microbiol 6:1463. https://doi.org/10.3389/fmicb.2015.01463

    PubMed  PubMed Central  Google Scholar 

  • Ochiai N, Fujimura M, Oshima M, Motoyama T, Ichiishi A, Yamada-Okabe H, Yamaguchi I (2002) Effects of iprodione and fludioxonil on glycerol synthesis and hyphal development in Candida albicans. Biosci Biotechnol Biochem 66:2209–2215

    Article  CAS  PubMed  Google Scholar 

  • Oliveira-Garcia E, Deising HB (2013) Infection structure-specific expression of β-1,3-glucan synthase is essential for pathogenicity of Colletotrichum graminicola and evasion of β-glucan-triggered immunity in maize. Plant Cell 25:2356–2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver RP, Hewitt HG (2014) Fungicides in crop protection, 2nd edn. CABI, Oxfordshire, UK

    Book  Google Scholar 

  • Owens J (2007) Determining druggability. Nat Rev Drug Discov 6:187–187

    Article  CAS  Google Scholar 

  • Peña A, Sánchez NS, Calahorra M (2013) Effects of chitosan on Candida albicans: conditions for its antifungal activity. Biomed Res Int 2013:527549. https://doi.org/10.1155/2013/527549

    PubMed  PubMed Central  Google Scholar 

  • Penn TJ, Wood ME, Soanes DM, Csukai M, Corran AJ, Talbot NJ (2015) Protein kinase C is essential for viability of the rice blast fungus Magnaporthe oryzae. Mol Microbiol 98:403–419. https://doi.org/10.1111/mmi.13132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perlin DS (2011) Current perspectives on echinocandin class drugs. Future Microbiol 6:441–457. https://doi.org/10.2217/fmb.11.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perlin DS (2015) Mechanisms of echinocandin antifungal drug resistance. Ann N Y Acad Sci 1354:1–11. https://doi.org/10.1111/nyas.12831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen LN, Marineo S, Mandalà S, Davids F, Sewell BT, Ingle RA (2010) The missing link in plant histidine biosynthesis: Arabidopsis myoinositol monophosphatase-like2 encodes a functional histidinol-phosphate phosphatase. Plant Physiol 152:1186–1196. https://doi.org/10.1104/pp.109.150805

    Article  CAS  PubMed  Google Scholar 

  • Piotrowski JS, Okada H, Lu F, Li SC, Hinchman L, Ranjan A, Smith DL, Higbee AJ, Ulbrich A, Coon JJ, Deshpande R, Bukhman YV, McIlwain S, Ong IM, Myers CL, Boone C, Landick R, Ralph J, Kabbage M, Ohya Y (2015) Plant-derived antifungal agent poacic acid targets beta-1,3-glucan. Proc Natl Acad Sci U S A 112:1490–1497. https://doi.org/10.1073/pnas.1410400112

    Google Scholar 

  • Rask-Andersen M, Almén MS, Schiöth HB (2011) Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 10:579–590. https://doi.org/10.1038/nrd3478

    Article  CAS  PubMed  Google Scholar 

  • Reese AJ, Yoneda A, Breger JA, Beauvais A, Liu H, Griffith CL, Bose I, Kim M-J, Skau C, Yang S, Sefko JA, Osumi M, Latge J-P, Mylonakis E, Doering TL (2007) Loss of cell wall alpha(1–3) glucan affects Cryptococcus neoformans from ultrastructure to virulence. Mol Microbiol 63:1385–1398. https://doi.org/10.1111/j.1365-2958.2006.05551.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhein J, Morawski BM, Hullsiek KH, Nabeta HW, Kiggundu R, Tugume L, Musubire A, Akampurira A, Smith KD, Alhadab A, Williams DA, Abassi M, Bahr NC, Velamakanni SS, Fisher J, Nielsen K, Meya DB, Boulware DR (2016) Efficacy of adjunctive sertraline for the treatment of HIV-associated cryptococcal meningitis: an open-label dose-ranging study. Lancet Infect Dis. pii:S1473-3099(16)00074–8. doi: https://doi.org/10.1016/S1473-3099(16)00074-8

  • Román E, Arana DM, Nombela C, Alonso-Monge R, Pla J (2007) MAP kinase pathways as regulators of fungal virulence. Trends Microbiol 15:181–190. https://doi.org/10.1016/j.tim.2007.02.001

    Article  PubMed  CAS  Google Scholar 

  • Rubinsztein DC, Bento CF, Deretic V (2015) Therapeutic targeting of autophagy in neurodegenerative and infectious diseases. J Exp Med 212:979–990. https://doi.org/10.1084/jem.20150956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russel PE (2005) A century of fungicide evolution. J Agric Sci 143:11–25

    Article  CAS  Google Scholar 

  • Saint-Macary ME, Barbisan C, Gagey MJ, Frelin O, Beffa R, Lebrun MH, Droux M (2015) Methionine biosynthesis is essential for infection in the rice blast fungus Magnaporthe oryzae. PLoS One 10:e0111108. https://doi.org/10.1371/journal.pone.0111108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saitoh H, Fujisawa S, Mitsuoka C, Ito A, Hirabuchi A, Ikeda K, Irieda H, Yoshino K, Yoshida K, Matsumura H, Tosa Y, Win J, Kamoun S, Takano Y, Terauchi R (2012) Large-scale gene disruption in Magnaporthe oryzae identifies MC69, a secreted protein required for infection by monocot and dicot fungal pathogens. PLoS Pathog 8:e1002711. https://doi.org/10.1371/journal.ppat.1002711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santhanam P, Boshoven JC, Salas O, Bowler K, Islam T, Keykha Saber M, van den Berg GC, Bar-Peled M, Thomma BP (2017) Rhamnose synthase activity is required for pathogenicity of the vascular wilt fungus Verticillium dahliae. Mol Plant Pathol 18:347–362. https://doi.org/10.1111/mpp.12401

    Article  CAS  PubMed  Google Scholar 

  • Sawistowska-Schroder ET, Kerridge D, Perry H (1984) Echinocandin inhibition of 13-beta-D-glucan synthase from Candida albicans. FEBS Lett 173:134–138. https://doi.org/10.1016/0014-5793(84)81032-7

    Article  CAS  PubMed  Google Scholar 

  • Schöbel F, Jacobsen ID, Brock M (2010) Evaluation of lysine biosynthesis as an antifungal drug target: biochemical characterization of Aspergillus fumigatus homocitrate synthase and virulence studies. Eukaryot Cell 9:878–893. https://doi.org/10.1128/EC.00020-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schrettl M, Bignell E, Kragl C, Joechl C, Rogers T, Arst HN Jr, Haynes K, Haas H (2004) Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J Exp Med 200:1213–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shepherd MG (1985) Pathogenicity of morphological and auxotrophic mutants of Candida albicans in experimental infections. Infect Immun 50:541–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Wang H, Silva LC, Na C, Prieto M, Futerman AH, Luberto C, Del Poeta M (2012) Methylation of glycosylated sphingolipid modulates membrane lipid topography and pathogenicity of Cryptococcus neoformans. Cell Microbiol 14:500–516. https://doi.org/10.1111/j.1462-5822.2011.01735.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spampinato C, Leonardi D (2013) Candida infections, causes, targets, and resistance mechanisms: traditional and alternative antifungal agents. Biomed Res Int 2013:204237. https://doi.org/10.1155/2013/204237

    PubMed  PubMed Central  Google Scholar 

  • Steinberg G (2007) Hyphal growth: a tale of motors, lipids, and the Spitzenkörper. Eukaryot Cell 6:351–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strittmatter SM (2014) Old drugs learn new tricks. Nat Med 20:590–591. https://doi.org/10.1038/nm.3595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweigard JA, Carroll AM, Farrall L, Chumley FG, Valent B (1998) Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol Plant Microbe Interact 11:404–412

    Article  CAS  PubMed  Google Scholar 

  • Tanaka C, Izumitsu K (2010) Two-component signaling system in filamentous fungi and the mode of action of dicarboximide and phenylpyrrole fungicides. In: Carisse O (ed) Fungicides. InTech. https://doi.org/10.5772/13774

  • Thieron M, Pontzen R, Kurahashi Y (1999) Carpropamid: a rice fungicide with two different modes of action. In: Lyr H, Russell PE, Dehne H-W, Sisler HD (eds) Modern fungicides and antifungal compounds II. In: 12th International Reinhardsbrunn symposium, Friedrichroda, Thuringia, Germany, 24–29 May 1998, pp 101–109

    Google Scholar 

  • Tucker SL, Talbot NJ (2001) Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annu Rev Phytopathol 39:385–417

    Article  CAS  PubMed  Google Scholar 

  • Turrà D, Segorbe D, Di Pietro A (2014) Protein kinases in plant-pathogenic fungi: conserved regulators of infection. Annu Rev Phytopathol 52:267–288

    Article  PubMed  CAS  Google Scholar 

  • Valiante V, Macheleidt J, Föge M, Brakhage AA (2015) The Aspergillus fumigatus cell wall integrity signaling pathway: drug target, compensatory pathways, and virulence. Front Microbiol 6:325. https://doi.org/10.3389/fmicb.2015.00325

    Article  PubMed  PubMed Central  Google Scholar 

  • Vincelli P (2002) QoI (Strobilurin) fungicides: benefits and risks. Plant Health Instructor. doi: https://doi.org/10.1094/PHI-I-2002-0809-02. Updated 2012

  • Vyas VK, Barrasa MI, Fink GR (2015) A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families. Sci Adv 1:e1500248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walker CA, Gómez BL, Mora-Montes HM, Mackenzie KS, Munro CA, Brown AJ, Gow NA, Kibbler CC, Odds FC (2010) Melanin externalization in Candida albicans depends on cell wall chitin structures. Eukaryot Cell 9:1329–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter H (2011) New fungicides and modes of action. In: Dehne HW, Deising HB, Gisi U, Kuck KH, Russell PE, Lyr H (eds) Modern fungicides and antifungal compounds VI. Deutsche phytomedizinischen Gesellschaft, Brunswick, Braunschweig, pp 47–54

    Google Scholar 

  • Weber I, Assmann D, Thines E, Steinberg G (2006) Polar localizing class V myosin chitin synthases are essential during early plant infection in the plant pathogenic fungus Ustilago maydis. Plant Cell 18:225–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler IE, Hollomon DW, Gustafson G, Mitchell JC, Longhurst C, Zhang Z, Gurr SJ (2003) Quinoxyfen perturbs signal transduction in barley powdery mildew (Blumeria graminis f.Sp. hordei). Mol Plant Pathol 4:177–186

    Article  CAS  PubMed  Google Scholar 

  • Whigham E, Qi S, Mistry D, Surana P, Xu R, Fuerst G, Pliego C, Bindschedler LV, Spanu PD, Dickerson JA, Innes RW, Nettleton D, Bogdanove AJ, Wise RP (2015) Broadly conserved fungal effector BEC1019 suppresses host cell death and enhances pathogen virulence in powdery mildew of barley (Hordeum vulgare L.). Mol Plant-Microbe Interact 28:968–983

    Google Scholar 

  • Wilson RA, Jenkinson JM, Gibson RP, Littlechild JA, Wang ZY, Talbot NJ (2007) Magnaporthe Tps1 regulates the pentose phosphate pathway, nitrogen metabolism and fungal virulence. EMBO J 26:3673–3685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Liebundguth N, Lockhart DJ, Lucau-Danila A, Lussier M, M'Rabet N, Menard P, Mittmann M, Pai C, Rebischung C, Revuelta JL, Riles L, Roberts CJ, Ross-MacDonald P, Scherens B, Snyder M, Sookhai-Mahadeo S, Storms RK, Véronneau S, Voet M, Volckaert G, Ward TR, Wysocki R, Yen GS, Yu K, Zimmermann K, Philippsen P, Johnston M, Davis RW (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    Article  CAS  PubMed  Google Scholar 

  • Xue Y, Shui G, Wenk MR (2014) TPS1 drug design for rice blast disease in Magnaporthe oryzae. Spring 3:18. https://doi.org/10.1186/2193-1801-3-18

    Article  CAS  Google Scholar 

  • Yang Z, Pascon RC, Alspaugh A, Cox GM, McCusker JH (2002) Molecular and genetic analysis of the Cryptococcus neoformans MET3 gene and a met3 mutant. Microbiol 148:2617–2625

    Article  CAS  Google Scholar 

  • Zhang Z, Qin G, Li B, Tian S (2014) Knocking out Bcsas1 in Botrytis cinerea impacts growth, development, and secretion of extracellular proteins, which decreases virulence. Mol Plant Microbe Interact 27:590–600

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Wei W, Fu Y, Cheng J, Xie J, Li G, Yi X, Kang Z, Dickman MB, Jiang D (2013) A secretory protein of necrotrophic fungus Sclerotinia sclerotiorum that suppresses host resistance. PLoS One 8:e53901. https://doi.org/10.1371/journal.pone.0053901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Foster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Foster, A.J. (2018). Identification of Fungicide Targets in Pathogenic Fungi. In: Anke, T., Schüffler, A. (eds) Physiology and Genetics. The Mycota, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-71740-1_9

Download citation

Publish with us

Policies and ethics