Skip to main content
Log in

Analysis of the expected density of internal equilibria in random evolutionary multi-player multi-strategy games

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we study the distribution and behaviour of internal equilibria in a d-player n-strategy random evolutionary game where the game payoff matrix is generated from normal distributions. The study of this paper reveals and exploits interesting connections between evolutionary game theory and random polynomial theory. The main contributions of the paper are some qualitative and quantitative results on the expected density, \(f_{n,d}\), and the expected number, E(nd), of (stable) internal equilibria. Firstly, we show that in multi-player two-strategy games, they behave asymptotically as \(\sqrt{d-1}\) as d is sufficiently large. Secondly, we prove that they are monotone functions of d. We also make a conjecture for games with more than two strategies. Thirdly, we provide numerical simulations for our analytical results and to support the conjecture. As consequences of our analysis, some qualitative and quantitative results on the distribution of zeros of a random Bernstein polynomial are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abel NH (1824) Mémoire sur les équations algébriques, où l’on démontre l’impossibilité de la résolution de l’équation générale du cinquiéme degré. Abel’s Ouvres 1:28–33

    Google Scholar 

  • Altenberg L (2010) Proof of the Feldman–Karlin conjecture on the maximum number of equilibria in an evolutionary system. Theor Popul Biol 77(4):263–269

    Article  Google Scholar 

  • Armentano D, Dedieu J (2009) A note about the average number of real roots of a bernstein polynomial system. J Complex 25(4):339–342

    Article  MathSciNet  MATH  Google Scholar 

  • Axelrod R (1984) The evolution of cooperation. Basic Books, New York

    MATH  Google Scholar 

  • Bayin SS (2006) Mathematical methods in science and engineering. Wiley, New York

    Book  MATH  Google Scholar 

  • Bloch A, Pólya G (1932) On the roots of certain algebraic equations. Proc Lond Math Soc S2–33(1):102–104

  • Broom M, Cannings C, Vickers GT (1993) On the number of local maxima of a constrained quadratic form. Proc R Soc Lond A 443:573–584

    Article  MathSciNet  MATH  Google Scholar 

  • Broom M, Cannings C, Vickers GT (1994) Sequential methods for generating patterns of ess’s. J Math Biol 32(6):597–615

    Article  MathSciNet  MATH  Google Scholar 

  • Broom M, Cannings C, Vickers GT (1997) Multi-player matrix games. Bull Math Biol 59(5):931–952

    Article  MATH  Google Scholar 

  • Broom M, Rychtar J (2013) Game-theoretical models in biology. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Cannings C, Vickers GT (1988) Patterns of ess’s ii. J Theor Biol 132(4):409–420

    Article  MathSciNet  Google Scholar 

  • Constantinescu E (2005) On the inequality of p. turán for legendre polynomials. J Inequal Pure Appl Math 6(2):28

  • Curtis LJ (2003) Atomic structure and lifetimes. Cambridge books online. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Duong MH, Han TA (2015) On the expected number of equilibria in a multi-player multi-strategy evolutionary game. Dyn Games Appl. doi:10.1007/s13235-015-0148-0

  • Edelman A, Kostlan E (1995) How many zeros of a random polynomial are real? Bull Am Math Soc (N.S.) 32(1):1–37

    Article  MathSciNet  MATH  Google Scholar 

  • Gokhale CS, Traulsen A (2010) Evolutionary games in the multiverse. Proc Natl Acad Sci USA 107(12):5500–5504

    Article  Google Scholar 

  • Gokhale CS, Traulsen A (2014) Evolutionary multiplayer games. Dyn Games Appl 4(4):468–488

    Article  MathSciNet  MATH  Google Scholar 

  • Graham RL, Knuth DE, Patashnik O (1994) Concrete mathematics: a foundation for computer science, 2nd edn. Addison–Wesley Longman Publishing Co., Inc, Boston

    MATH  Google Scholar 

  • Haigh J (1988) The distribution of evolutionarily stable strategies. J Appl Probab 25(2):233–246

    Article  MathSciNet  MATH  Google Scholar 

  • Haigh J (1989) How large is the support of an ess? J Appl Probab 26(1):164–170

    Article  MathSciNet  MATH  Google Scholar 

  • Han TA, Pereira LM, Lenaerts T (2015) Avoiding or restricting defectors in public goods games? J R Soc Interface 12(103):20141203

    Article  Google Scholar 

  • Han TA, Traulsen A, Gokhale CS (2012) On equilibrium properties of evolutionary multi-player games with random payoff matrices. Theor Popul Biol 81(4):264–272

    Article  Google Scholar 

  • Han TA (2013) Intention recognition, commitments and their roles in the evolution of cooperation: from artificial intelligence techniques to evolutionary game theory models, vol 9. Springer SAPERE series

  • Hardin G (1968) The tragedy of the commons. Science 162:1243–1248

    Article  Google Scholar 

  • Hart S, Rinott Y, Weiss B (2008) Evolutionarily stable strategies of random games, and the vertices of random polygons. Ann Appl Probab 18(1):259–287

    Article  MathSciNet  MATH  Google Scholar 

  • Hauert C, De Monte S, Hofbauer J, Sigmund K (2002) Replicator dynamics for optional public good games. J Theor Biol 218:187–194

    Article  MathSciNet  Google Scholar 

  • Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Karlin S (1980) The number of stable equilibria for the classical one-locus multiallele slection model. J Math Biol 9:189–192

    Article  MathSciNet  MATH  Google Scholar 

  • Kontogiannis SC, Spirakis PG (2009) On the support size of stable strategies in random games. Theor Comput Sci 410(8):933–942

    Article  MathSciNet  MATH  Google Scholar 

  • Kostlan E (1993) On the distribution of roots of random polynomials. In: From topology to computation: proceedings of the smalefest (Berkeley, CA, 1990). Springer, New York, pp 419–431

  • Kostlan E (2002) On the expected number of real roots of a system of random polynomial equations. In: Cucker F, Rojas JM (eds) Foundations of computational mathematics (Hong Kong, 2000). World Scientific Publishing, River Edge, NJ, pp 149–188

  • Kowalski E (2006) Bernstein polynomials and brownian motion. Am Math Mon 113(10):865–886

    Article  MathSciNet  MATH  Google Scholar 

  • Legendre M (1785) Recherches sur l’attraction des sphrodes homognes. Mmoires de Mathmatiques et de Physique, prsents l’Acadmie Royale des Sciences, par divers savans, et lus dans ses Assembles, Tome X

  • Maynard-Smith J (1982) Evolution and the theory of games. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Maynard Smith J, Price GR (1973) The logic of animal conflict. Nature 246:15–18

    Article  Google Scholar 

  • McLennan A (2005) The expected number of nash equilibria of a normal form game. Econometrica 73(1):141–174

    Article  MathSciNet  MATH  Google Scholar 

  • McLennan A, Berg J (2005) Asymptotic expected number of nash equilibria of two-player normal form games. Games Econ Behav 51(2):264–295

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen H, Nguyen O, Vu V (2015) On the number of real roots of random polynomials. Commun Contemp Math (to appear)

  • Nowak MA (2006) Evolutionary dynamics. Harvard University Press, Cambridge

    MATH  Google Scholar 

  • Pacheco JM, Santos FC, Souza MO, Skyrms B (2009) Evolutionary dynamics of collective action in n-person stag hunt dilemmas. Proc R Soc B 276:315–321

    Article  Google Scholar 

  • Perc M, Szolnoki A (2010) Coevolutionary games–a mini review. Biosystems 99(2):109–125

    Article  Google Scholar 

  • Petrone S (1999) Random bernstein polynomials. Scand J Stat 26(3):373–393

    Article  MathSciNet  MATH  Google Scholar 

  • Santos FC, Santos MD, Pacheco JM (2008) Social diversity promotes the emergence of cooperation in public goods games. Nature 454:213–216

    Article  Google Scholar 

  • Schuster P, Sigmund K (1983) Replicator dynamics. J Theo Biol 100:533–538

    Article  MathSciNet  Google Scholar 

  • Tao T, Vu V (2014) Local universality of zeroes of random polynomials. Int Math Res Notices 2015(13):5053–5139

  • Taylor PD, Jonker L (1978) Evolutionary stable strategies and game dynamics. Math Biosci 40:145–156

    Article  MathSciNet  MATH  Google Scholar 

  • Turán P (1950) On the zeros of the polynomials of Legendre. Časopis Pěst Mat Fys 75:113–122

    MathSciNet  MATH  Google Scholar 

  • Vickers GT, Cannings C (1988) On the number of equilibria in a one-locus, multi allelic system. J Theor Biol 131:273–277

    Article  MathSciNet  Google Scholar 

  • Vickers GT, Cannings C (1988) Patterns of ess’s i. J Theor Biol 132(4):387–408

    Article  MathSciNet  Google Scholar 

  • Zeeman EC (1980) Population dynamics from game theory. Lect Notes Math 819:471–497

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous referee for his/her useful suggestions that helped us to improve the presentation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manh Hong Duong.

Appendix

Appendix

Detailed proofs of some lemmas and theorems in the previous sections are presented in this appendix.

1.1 Proof of Lemma 3

This relation has appeared in (Graham et al. 1994, Exercise 101,Chapter 5). For the readers’ convenience, we provide a proof here.

Proof of Lemma 3

Let \(x=\frac{1+q}{1-q}\), from (28) we have

$$\begin{aligned} P_d\left( \frac{1+q}{1-q}\right)&=\frac{1}{2^d}\sum _{i=0}^d\begin{pmatrix} d\\ i \end{pmatrix}^2\left( \frac{1+q}{1-q}-1\right) ^{d-i}\left( \frac{1+q}{1-q}+1\right) ^i \\ {}&=\frac{1}{2^d}\sum _{i=0}^d\begin{pmatrix} d\\ i \end{pmatrix}^2\left( \frac{2q}{1-q}\right) ^{d-i}\left( \frac{2}{1-q}\right) ^i \\ {}&=\frac{1}{(1-q)^d}\sum _{i=0}^d\begin{pmatrix} d\\ i \end{pmatrix}^2q^{d-i} \\ {}&=\frac{1}{(1-q)^d}\sum _{i=0}^d\begin{pmatrix} d\\ i \end{pmatrix}^2q^{i}. \end{aligned}$$

Therefore,

$$\begin{aligned} \sum _{i=0}^d\begin{pmatrix} d\\ i \end{pmatrix}^2q^{i}=(1-q)^d P_d\left( \frac{1+q}{1-q}\right) . \end{aligned}$$

By taking \(q=t^2\), we obtain (31). \(\square \)

1.2 Proof of Theorem 3

Proof of Theorem 3

By taking the derivative of both sides in (31), we obtain

$$\begin{aligned} M_{d+1}'(t)&=-2\,t\,d\,(1-t^2)^{d-1}P_d\left( \frac{1+t^2}{1-t^2}\right) +4t(1-t^2)^{d-2}P_d'\left( \frac{1+t^2}{1-t^2}\right) \\&=-2\,t\,d\,\frac{M_{d+1}(t)}{1-t^2}+4t(1-t^2)^{d-2}P_d'\left( \frac{1+t^2}{1-t^2}\right) . \end{aligned}$$

It follows that

$$\begin{aligned} \frac{M_{d+1}'(t)}{M_{d+1}(t)}=\frac{-2\,t\,d}{1-t^2}+\frac{4t}{(1-t^2)^2}\frac{P_d'}{P_d}\left( \frac{1+t^2}{1-t^2}\right) . \end{aligned}$$

Now we compute the expression inside the square-root of the right-hand side of (32). We have

$$\begin{aligned} t\frac{M_{d+1}'(t)}{M_{d+1}(t)}=\frac{-2\,t^2\,d}{1-t^2}+\frac{4t^2}{(1-t^2)^2}\frac{P_d'}{P_d}\left( \frac{1+t^2}{1-t^2}\right) , \end{aligned}$$

and

$$\begin{aligned} \left( t\frac{M_{d+1}'(t)}{M_{d+1}(t)}\right) '= & {} -\frac{4\,t\,d}{(1-t^2)^2}+\frac{8t(1+t^2)}{(1-t^2)^3}\frac{P_d'}{P_d}\left( \frac{1+t^2}{1-t^2}\right) \\&+\frac{16t^3}{(1-t^2)^4}\frac{P_d''\,P_d-(P'_d)^2}{P_d^2}\left( \frac{1+t^2}{1-t^2}\right) . \end{aligned}$$

Substituting this expression into (33), we get

$$\begin{aligned} (2\pi f_{d+1}(t))^2= & {} -\frac{4\,d}{(1-t^2)^2}+\frac{8(1+t^2)}{(1-t^2)^3}\frac{P_d'}{P_d}\left( \frac{1+t^2}{1-t^2}\right) \nonumber \\&+\frac{16t^2}{(1-t^2)^4}\frac{P_d''\,P_d-(P'_d)^2}{P_d^2}\left( \frac{1+t^2}{1-t^2}\right) . \end{aligned}$$
(48)

According to (27), the Legendre polynomial \(P_d\) satisfies the following equation for all \(x\in \mathbf { R}\)

$$\begin{aligned} -2x P_d'(x)+(1-x^2)P''_d(x)=-d(d+1)P_d(x). \end{aligned}$$

As a consequence, we obtain

$$\begin{aligned} \frac{P''_d(x)}{P_d(x)}=\frac{1}{1-x^2}\left( 2x\frac{P_d'(x)}{P_d(x)}-d(d+1)\right) . \end{aligned}$$

Substituting this expression into (48) with \(x=\frac{1+t^2}{1-t^2}\), we get

which is the claimed relation (33). \(\square \)

1.3 Proof of Theorem 4

Proof of Theorem 4

Using the following relation of the Legendre polynomials for all \(x\in \mathbf { R}\)

$$\begin{aligned} P_d'(x)=\frac{d}{x^2-1}\left( xP_d(x)-P_{d-1}(x)\right) , \end{aligned}$$

we get

$$\begin{aligned} \frac{P_d'(x)}{P_d(x)}=\frac{d}{x^2-1}\left( x-\frac{P_{d-1}(x)}{P_d(x)}\right) . \end{aligned}$$
(49)

In particular, taking \(x=\frac{1+t^2}{1-t^2}\), we obtain

$$\begin{aligned} \frac{P'_d}{P_d}\left( \frac{1+t^2}{1-t^2}\right)&=\frac{d}{\left( \frac{1+t^2}{1-t^2}\right) ^2-1}\left[ \frac{1+t^2}{1-t^2}-\frac{P_{d-1}}{P_d}\left( \frac{1+t^2}{1-t^2}\right) \right] \\&=\frac{d(1-t^2)^2}{4t^2}\left[ \frac{1+t^2}{1-t^2}-\frac{P_{d-1}}{P_d}\left( \frac{1+t^2}{1-t^2}\right) \right] . \end{aligned}$$

Substituting this expression into (33), we achieve

$$\begin{aligned} (2\pi f_{d+1}(t))^2=\frac{4d^2}{(1-t^2)^2}-\frac{d^2}{t^2}\left[ \frac{1+t^2}{1-t^2}-\frac{P_{d-1}}{P_d}\left( \frac{1+t^2}{1-t^2}\right) \right] ^2, \end{aligned}$$

which is (35). \(\square \)

1.4 Proof of Lemma 4

Proof of Lemma 4

This lemma follows directly from Constantinescu 2005 (Theorem 2.1) where the authors proved that

$$\begin{aligned} P_d(x)^2 - P_{d+1}(x)P_{d-1}(x) = \frac{1-x^2}{d (d+1)} \left( \sum _{i=1}^d \frac{1}{i} + \sum _{i=1}^{d-1} \frac{1}{i+1} \sum _{j=1}^i (2j+1) P_j^2(x)\right) , \end{aligned}$$

which is negative for all \(|x| \ge 1\). \(\square \)

1.5 Proof of Proposition 2

Proof of Proposition 2

We will prove that

$$\begin{aligned} f^2_{d+2}(t)-f^2_{d+1}(t)\ge 0 \quad \Longleftrightarrow \quad (38). \end{aligned}$$
(50)

From (35), we have

$$\begin{aligned}&4\pi ^2(f^2_{d+2}(t)-f^2_{d+1}(t))\\&\quad =\frac{4(d+1)^2}{(1-t^2)^2}-\frac{(d+1)^2}{t^2}\left[ \frac{1+t^2}{1-t^2}-\frac{P_{d}}{P_{d+1}}\left( \frac{1+t^2}{1-t^2}\right) \right] ^2\\&\qquad -\frac{4d^2}{(1-t^2)^2}+\frac{d^2}{t^2}\left[ \frac{1+t^2}{1-t^2}-\frac{P_{d-1}}{P_d}\left( \frac{1+t^2}{1-t^2}\right) \right] ^2\\&\quad =\frac{4(2d+1)}{(1-t^2)^2}-\frac{1}{t^2}\left[ \frac{1+t^2}{1-t^2}-\frac{(d+1)P_d^2-dP_{d-1}P_{d+1}}{P_dP_{d+1}}\left( \frac{1+t^2}{1-t^2}\right) \right] \\&\qquad \times \left[ (2d+1)\frac{1+t^2}{1-t^2}-\frac{(d+1)P_d^2+dP_{d-1}P_{d+1}}{P_dP_{d+1}}\left( \frac{1+t^2}{1-t^2}\right) \right] . \end{aligned}$$

Therefore \(f_d(t)\) is increasing as a function of d if and only if

$$\begin{aligned}&\left[ \frac{1+t^2}{1-t^2}-\frac{(d+1)P_d^2-dP_{d-1}P_{d+1}}{P_dP_{d+1}}\left( \frac{1+t^2}{1-t^2}\right) \right] \\&\quad \times \left[ (2d+1)\frac{1+t^2}{1-t^2}-\frac{(d+1)P_d^2+dP_{d-1}P_{d+1}}{P_dP_{d+1}}\left( \frac{1+t^2}{1-t^2}\right) \right] \\&\qquad \le \frac{4(2d+1)t^2}{(1-t^2)^2}. \end{aligned}$$

We re-write the expression above using the variable x, using the relation \(x^2-1=\frac{4t^2}{(1-t^2)^2}\), as follows

$$\begin{aligned}&\left[ x-\frac{(d+1)P_d^2-dP_{d-1}P_{d+1}}{P_dP_{d+1}}(x)\right] \times \left[ (2d+1)x-\frac{(d+1)P_d^2+dP_{d-1}P_{d+1}}{P_dP_{d+1}}(x)\right] \nonumber \\&\quad \le (2d+1)(x^2-1). \end{aligned}$$
(51)

We now simplify this expression using the recursion relation of the Legendre polynomials, i.e. \(dP_{d-1}=(2d+1)xP_d-(d+1)P_{d+1}\). Namely, we have

$$\begin{aligned}&xP_dP_{d+1}-(d+1)P_d^2+dP_{d-1}P_{d+1}=xP_dP_{d+1}-(d+1)P_d^2\\&+[(2d+1)xP_d-(d+1)P_{d+1}]P_{d+1}\\&\quad =(d+1)[-P_d^2-P_{d+1}^2+2xP_dP_{d+1}] \end{aligned}$$

and

$$\begin{aligned}&(2d+1)xP_dP_{d+1}-(d+1)P_d^2-dP_{d-1}P_{d+1}\\&\qquad =(2d+1)xP_dP_{d+1}-(d+1)P_d^2-[(2d+1)xP_d-(d+1)P_{d+1}]P_{d+1}\\&\qquad =(d+1)(P^2_{d+1}-P_d^2). \end{aligned}$$

Substituting these calculations into (51) we obtain (38).

To prove the second assertion of Proposition 2, we proceed as follows. Let

$$\begin{aligned} H_{d+1}&= (d+1)^2\left[ P^2_{d+1}(x)+P^2_{d}(x)-2x P_{d+1}(x)P_d(x)\right] \\&= \left[ (2d+1)x P_{d}(x)- d P_{d-1}(x)\right] ^2 + (d+1)^2 P^2_{d}(x)\\&\qquad -2x (d+1) \left[ (2d+1)x P_{d}(x)- d P_{d-1}(x)\right] P_d(x) \\&=\left[ (2d+1)^2 x^2 + (d+1)^2 - 2(d+1)(2d+1) x^2 \right] P^2_{d}(x)\\&\qquad -\left[ 2d(2d+1)x - 2d(d+1) x \right] P_{d}(x) P_{d-1}(x) + d^2 P^2_{d-1}(x) \\&= \left[ d^2 + (2d+1)(1-x^2) \right] P^2_{d}(x)+d^2 P^2_{d-1}(x)-2x d^2 P_{d}(x)P_{d-1}(x) \\&= d^2 \left[ P^2_{d}(x)+P^2_{d-1}(x)-2x P_{d}(x)P_{d-1}(x)\right] + (2d+1)(1-x^2) P^2_{d}(x) \\&= H_d + (2d+1)(1-x^2) P^2_{d}(x). \end{aligned}$$

Hence, the expression in (38) can be simplified as follows

$$\begin{aligned}&H_{d+1} [P^2_{d+1}(x)-P^2_{d}(x)] +(2d+1)(x^2-1)P^2_d(x)P^2_{d+1}(x) \\&\quad = [H_d + (2d+1)(1-x^2) P^2_{d}(x)][P^2_{d+1}(x)-P^2_{d}(x)] \\&\qquad +(2d+1)(x^2-1)P^2_d(x)P^2_{d+1}(x) \\&\quad = H_d [P^2_{d+1}(x)-P^2_{d}(x)] +(2d+1)(x^2-1)P^4_d(x) \\&\quad = \frac{P^2_{d+1}(x)-P^2_{d}(x)}{P^2_{d}(x)-P^2_{d-1}(x)}\\&\qquad \times \left[ H_d \left( P^2_{d}(x)-P^2_{d-1}(x)\right) +(2d-1)(x^2-1)P^2_d(x)P^2_{d-1}(x) \cdot Q \right] , \end{aligned}$$

where \(Q = \frac{(2d+1)P^2_{d}(P^2_{d}-P^2_{d-1})}{(2d-1)P^2_{d-1}(P^2_{d+1}-P^2_{d})} \). Suppose that (39) is true, i.e.,

$$\begin{aligned} (2d+1)P_d^4 \ge P_{d-1}^2 \left[ (2d-1) P_{d+1}^2 + 2 P_d^2 \right] . \end{aligned}$$

This implies that \(Q\ge 1\) for all x and d. Then it follows that

$$\begin{aligned}&H_{d+1} [P^2_{d+1}(x)-P^2_{d}(x)] +(2d+1)(x^2-1)P^2_d(x)P^2_{d+1}(x)\nonumber \\&\qquad \ge \frac{P^2_{d+1}(x)-P^2_{d}(x)}{P^2_{d}(x)-P^2_{d-1}(x)}\left[ H_d \left( P^2_{d}(x)-P^2_{d-1}(x)\right) +(2d-1)(x^2-1)P^2_d(x)P^2_{d-1}(x)\right] \nonumber \\&\qquad \ge \frac{P^2_{d+1}(x)-P^2_{d}(x)}{P^2_{d}(x)-P^2_{d-1}(x)}\times \frac{P^2_{d}(x)-P^2_{d-1}(x)}{P^2_{d-1}(x)-P^2_{d-2}(x)}\nonumber \\&\qquad \qquad \times \left[ H_{d-1} \left( P^2_{d-1}(x)-P^2_{d-2}(x)\right) +(2d-3)(x^2-1)P^2_{d-1}(x)P^2_{d-2}(x)\right] \nonumber \\&\qquad \ge \cdots \nonumber \\&\qquad \ge \prod \limits _{i=1}^{d}\frac{P^2_{i+1}(x)-P^2_{i}(x)}{P^2_{i}(x)-P^2_{i-1}(x)}\times \left[ H_1 \left( P^2_{1}(x)-P^2_{0}(x)\right) +(x^2-1)P^2_{1}(x)P^2_{0}(x)\right] . \end{aligned}$$
(52)

By definition of \(H_d\), we have

$$\begin{aligned} H_1=P_1^2(x)+P^2_0(x)-2x P_{1}(x)P_0(x)=x^2+1-2x^2=1-x^2. \end{aligned}$$

Substituting this into (52), we obtain

$$\begin{aligned}&H_{d+1} [P^2_{d+1}(x)-P^2_{d}(x)] +(2d+1)(x^2-1)P^2_d(x)P^2_{d+1}(x) \\&\quad \ge (x^2-1)\prod \limits _{i=1}^{d}\frac{P^2_{i+1}(x)-P^2_{i}(x)}{P^2_{i}(x)-P^2_{i-1}(x)} \\&\quad = P^2_{d+1}(x)-P_d^2(x)\ge 0, \end{aligned}$$

i.e., the condition (38) is satisfied. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duong, M.H., Han, T.A. Analysis of the expected density of internal equilibria in random evolutionary multi-player multi-strategy games. J. Math. Biol. 73, 1727–1760 (2016). https://doi.org/10.1007/s00285-016-1010-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-016-1010-8

Keywords

Mathematics Subject Classification

Navigation