Skip to main content

Advertisement

Log in

An inverse problem formulation for parameter estimation of a reaction–diffusion model of low grade gliomas

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We present a numerical scheme for solving a parameter estimation problem for a model of low-grade glioma growth. Our goal is to estimate the spatial distribution of tumor concentration, as well as the magnitude of anisotropic tumor diffusion. We use a constrained optimization formulation with a reaction–diffusion model that results in a system of nonlinear partial differential equations. In our formulation, we estimate the parameters using partially observed, noisy tumor concentration data at two different time instances, along with white matter fiber directions derived from diffusion tensor imaging. The optimization problem is solved with a Gauss–Newton reduced space algorithm. We present the formulation and outline the numerical algorithms for solving the resulting equations. We test the method using a synthetic dataset and compute the reconstruction error for different noise levels and detection thresholds for monofocal and multifocal test cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Manual tuning for this value has been reported (Jbabdi et al. 2005; Sodt et al. 2014).

  2. DTI is an MR imaging technique that measures water diffusion tensor at every point in the brain (Le Bihan et al. 2001).

  3. The parameters were selected in the range specified by (Stein et al. 2007).

  4. This area can be increased for highly infiltrative tumors that spread through a larger portion of the brain.

References

  • Anderson A, Xie J, Pizzonia J, Bronen R, Spencer D, Gore J (2000) Effects of cell volume fraction changes on apparent diffusion in human cells. Magn Reson Imaging 18(6):689–695

    Article  Google Scholar 

  • Atuegwu NC, Arlinghaus LR, Li X, Chakravarthy AB, Abramson VG, Sanders ME, Yankeelov TE (2013) Parameterizing the logistic model of tumor growth by DW-MRI and DCE-MRI data to predict treatment response and changes in breast cancer cellularity during neoadjuvant chemotherapy. Transl Oncol 6(3):256–264

    Article  Google Scholar 

  • Bangerth W, Joshi A (2008) Adaptive finite element methods for the solution of inverse problems in optical tomography. Inverse Probl 24(3):034,011

    Article  MathSciNet  Google Scholar 

  • Bellomo N, Li N, Maini PK (2008) On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math Models Methods Appl Sci 18(04):593–646

    Article  MathSciNet  MATH  Google Scholar 

  • Biros G, Ghattas O (2005a) Parallel Lagrange–Newton–Krylov–Schur methods for PDE-constrained optimization. Part I: The Krylov–Schur solver. SIAM J Sci Comput 27(2):687–713

    Article  MathSciNet  MATH  Google Scholar 

  • Biros G, Ghattas O (2005b) Parallel Lagrange–Newton–Krylov–Schur methods for PDE-constrained optimization. Part II: the Lagrange–Newton solver and its application to optimal control of steady viscous flows. SIAM J Sci Comput 27(2):714–739

    Article  MathSciNet  MATH  Google Scholar 

  • Bondiau P-Y, Clatz O, Sermesant M, Marcy P-Y, Delingette H, Frenay M, Ayache N (2008) Biocomputing: numerical simulation of glioblastoma growth using diffusion tensor imaging. Phys Med Biol 53(4):879

    Article  Google Scholar 

  • Clatz O, Sermesant M, Bondiau P-Y, Delingette H, Warfield SK, Malandain G, Ayache N (2005) Realistic simulation of the 3-d growth of brain tumors in MR images coupling diffusion with biomechanical deformation. Med Imaging IEEE Trans 24(10):1334–1346

    Article  Google Scholar 

  • Cobzas D, Mosayebi P, Murtha A, Jagersand M (2009) Tumor invasion margin on the riemannian space of brain fibers. In: Medical image computing and computer-assisted intervention-MICCAI 2009. Springer, pp 531–539

  • Cocosco CA, Kollokian V, Kwan RK-S, Pike GB, Evans AC (1997) Brainweb: online interface to a 3d MRI simulated brain database. In: NeuroImage, Citeseer

  • Del Pino S, Pironneau O (2003) A fictitious domain based general PDE solver. In: Numerical methods for scientific computing variational problems and applications, Barcelona

  • Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro-oncology 14(suppl 5):v1–v49

    Article  Google Scholar 

  • Engwer C, Hillen T, Knappitsch M, Surulescu C (2014) Glioma follow white matter tracts: a multiscale DTI-based model. J Math Biol 1–32. doi:10.1007/s00285-014-0822-7

  • Fathi A, Kallivokas L, Poursartip B (2015) Full waveform inversion in three-dimensional PML-truncated elastic media. Comput Methods Appl Mech Eng. arXiv:1408.6221

  • Giese A, Kluwe L, Laube B, Meissner H, Berens ME, Westphal M (1996) Migration of human glioma cells on myelin. Neurosurgery 38(4):755–764

    Article  Google Scholar 

  • Habib S, Molina-Parıs C, Deisboeck TS (2003) Complex dynamics of tumors: modeling an emerging brain tumor system with coupled reaction–diffusion equations. Phys A: Stati Mech Appl 327(3):501–524

    Article  MATH  Google Scholar 

  • Hansen PC (1992) Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev 34(4):561–580

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen PC (1999) The L-curve and its use in the numerical treatment of inverse problems. IMM, Department of Mathematical Modelling, Technical University of Denmark

  • Hawkins-Daarud A, Rockne RC, Anderson AR, Swanson KR (2013) Modeling tumor-associated edema in gliomas during anti-angiogenic therapy and its impact on imageable tumor. Front Oncol 3:66

    Article  Google Scholar 

  • Hillen T (2006) M5 mesoscopic and macroscopic models for mesenchymal motion. J Math Biol 53(4):585–616

    Article  MathSciNet  MATH  Google Scholar 

  • Hochberg FH, Pruitt A (1980) Assumptions in the radiotherapy of glioblastoma. Neurology 30(9):907–907

    Article  Google Scholar 

  • Hogea C, Davatzikos C, Biros G (2007) Modeling glioma growth and mass effect in 3D MR images of the brain. In: Medical image computing and computer-assisted intervention-MICCAI 2007. Springer, pp 642–650

  • Hogea C, Davatzikos C, Biros G (2008a) Brain-tumor interaction biophysical models for medical image registration. SIAM J Sci Comput 30(6):3050–3072

    Article  MathSciNet  MATH  Google Scholar 

  • Hogea C, Davatzikos C, Biros G (2008b) An image-driven parameter estimation problem for a reaction–diffusion glioma growth model with mass effects. J Math Biol 56(6):793–825

    Article  MathSciNet  MATH  Google Scholar 

  • Holland BA, Brant-Zawadzki M, Norman D, Hans Newton T (1985) Magnetic resonance imaging of primary intracranial tumors: a review. Int J Radiat Oncol Biol Phys 11(2):315–321

    Article  Google Scholar 

  • Horsfield MA, Jones DK (2002) Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases-a review. NMR Biomed 15(7–8):570–577

    Article  Google Scholar 

  • Jbabdi S, Mandonnet E, Duffau H, Capelle L, Swanson KR, Pélégrini-Issac M, Guillevin R, Benali H (2005) Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging. Magn Reson Med 54(3):616–624

    Article  Google Scholar 

  • Kallivokas L, Fathi A, Kucukcoban S, Stokoe K II, Bielak J, Ghattas O (2013) Site characterization using full waveform inversion. Soil Dyn Earthq Eng 47:62–82

    Article  Google Scholar 

  • Konukoglu E, Clatz O, Bondiau P-Y, Delingette H, Ayache N (2010a) Extrapolating glioma invasion margin in brain magnetic resonance images: suggesting new irradiation margins. Med Image Anal 14(2):111–125

    Article  Google Scholar 

  • Konukoglu E, Clatz O, Menze BH, Stieltjes B, Weber M-A, Mandonnet E, Delingette H, Ayache N (2010b) Image guided personalization of reaction–diffusion type tumor growth models using modified anisotropic eikonal equations. Med Imaging IEEE Trans 29(1):77–95

    Article  Google Scholar 

  • Lawrence YR, Li XA, El Naqa I, Hahn CA, Marks LB, Merchant TE, Dicker AP (2010) Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys 76(3):S20–S27

    Article  Google Scholar 

  • Le Bihan D, Mangin J-F, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13(4):534–546

    Article  Google Scholar 

  • Lima E, Oden J, Almeida R (2014) A hybrid ten-species phase-field model of tumor growth. Math Models Methods Appl Sci 24(13):2569–2599

    Article  MathSciNet  MATH  Google Scholar 

  • Mang A, Toma A, Schuetz TA, Becker S, Eckey T, Mohr C, Petersen D, Buzug TM (2012) Biophysical modeling of brain tumor progression: from unconditionally stable explicit time integration to an inverse problem with parabolic PDE constraints for model calibration. Med Phys 39(7):4444–4459

    Article  Google Scholar 

  • Mohamed A, Davatzikos C (2005) Finite element modeling of brain tumor mass-effect from 3d medical images. In: Medical image computing and computer-assisted intervention-MICCAI 2005. Springer, pp 400–408

  • Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K, Hua K, Faria AV, Mahmood A, Woods R et al (2008) Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage 40(2):570–582

    Article  Google Scholar 

  • Mosayebi P, Cobzas D, Murtha A, Jagersand M (2012) Tumor invasion margin on the Riemannian space of brain fibers. Med Image Anal 16(2):361–373

    Article  Google Scholar 

  • Murray JD (1989) Mathematical biology. Springer, New York

    Book  MATH  Google Scholar 

  • Nazzaro JM, Neuwelt EA (1990) The role of surgery in the management of supratentorial intermediate and high-grade astrocytomas in adults. J Neurosurg 73(3):331–344

    Article  Google Scholar 

  • Newton H (1994) Primary brain tumors: review of etiology, diagnosis and treatment. Am Fam Physician 49(4):787–797

    Google Scholar 

  • Painter K, Hillen T (2013) Mathematical modelling of glioma growth: the use of diffusion tensor imaging (DTI) data to predict the anisotropic pathways of cancer invasion. J Theor Biol 323:25–39

    Article  MathSciNet  Google Scholar 

  • Powathil G, Kohandel M, Sivaloganathan S, Oza A, Milosevic M (2007) Mathematical modeling of brain tumors: effects of radiotherapy and chemotherapy. Phys Med Biol 52(11):3291

    Article  Google Scholar 

  • Rekik I, Allassonnière S, Clatz O, Geremia E, Stretton E, Delingette H, Ayache N (2013) Tumor growth parameters estimation and source localization from a unique time point: application to low-grade gliomas. Comput Vis Image Underst 117(3):238–249

    Article  Google Scholar 

  • Rockne R, Alvord E Jr, Rockhill J, Swanson K (2009) A mathematical model for brain tumor response to radiation therapy. J Math Biol 58(4–5):561–578

    Article  MathSciNet  MATH  Google Scholar 

  • Rockne R, Rockhill J, Mrugala M, Spence A, Kalet I, Hendrickson K, Lai A, Cloughesy T, Alvord E Jr, Swanson K (2010) Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach. Phys Med Biol 55(12):3271

    Article  Google Scholar 

  • Ropp DL, Shadid JN (2009) Stability of operator splitting methods for systems with indefinite operators: advection-diffusion-reaction systems. J Comput Phys 228(9):3508–3516

    Article  MathSciNet  Google Scholar 

  • Salcman M (1980) Survival in glioblastoma: historical perspective. Neurosurgery 7(5):435–439

    Article  Google Scholar 

  • Seither R, Jose B, Paris K, Lindberg R, Spanos W (1995) Results of irradiation in patients with high-grade gliomas evaluated by magnetic resonance imaging. Am J Clin Oncol 18(4):297–299

    Article  Google Scholar 

  • Silbergeld DL, Chicoine MR (1997) Isolation and characterization of human malignant glioma cells from histologically normal brain. J Neurosurg 86(3):525–531

    Article  Google Scholar 

  • Sodt R, Rockne R, Neal M, Kalet I, Swanson KR (2014) Quantifying the role of anisotropic invasion in human glioblastoma. In: Computational surgery and dual training. Springer, pp 315–329

  • Stadlbauer A, Pölking E, Prante O, Nimsky C, Buchfelder M, Kuwert T, Linke R, Doelken M, Ganslandt O (2009) Detection of tumour invasion into the pyramidal tract in glioma patients with sensorimotor deficits by correlation of 18f-fluoroethyl-l-tyrosine PET and magnetic resonance diffusion tensor imaging. Acta Neurochir 151(9):1061–1069

    Article  Google Scholar 

  • Stein AM, Demuth T, Mobley D, Berens M, Sander LM (2007) A mathematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment. Biophys J 92(1):356–365

    Article  Google Scholar 

  • Strang G (1968) On the construction and comparison of difference schemes. SIAM J Numer Anal 5(3):506–517

    Article  MathSciNet  MATH  Google Scholar 

  • Swanson K, Alvord E, Murray J (2000) A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif 33(5):317–330

    Article  Google Scholar 

  • Swanson K, Rostomily R, Alvord E (2008) A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle. Br J Cancer 98(1):113–119

    Article  Google Scholar 

  • Swanson KR, Alvord E, Murray J (2002) Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy. Br J Cancer 86(1):14–18

    Article  Google Scholar 

  • Tikhonov A (1963) Solution of incorrectly formulated problems and the regularization method. Sov Math Dokl 5:1035–1038

    MATH  Google Scholar 

  • Tracqui P, Cruywagen G, Woodward D, Bartoo G, Murray J, Alvord E (1995) A mathematical model of glioma growth: the effect of chemotherapy on spatio-temporal growth. Cell Prolif 28(1):17–31

    Article  Google Scholar 

  • Weis JA, Miga MI, Arlinghaus LR, Li X, Chakravarthy AB, Abramson V, Farley J, Yankeelov TE (2013) A mechanically coupled reaction–diffusion model for predicting the response of breast tumors to neoadjuvant chemotherapy. Phys Med Biol 58(17):5851

    Article  Google Scholar 

  • Wrensch M, Minn Y, Chew T, Bondy M, Berger MS (2002) Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro-oncology 4(4):278–299

    Google Scholar 

Download references

Acknowledgments

We would like to thank Thomas Hillen for the helpful discussion on the anisotropic diffusion of gliomas. We would like to also thank Florian Tramnitzke for contributing to this work during his internship in our group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Gholami.

Appendices

Appendix A: Operator definitions

The definitions of operators in Eqs. 34, 35, 36, and 37 are as follows:

$$\begin{aligned}&J^T\tilde{\alpha }:=-{\frac{\partial \tilde{\alpha }}{\partial t}}-D\tilde{\alpha } -{\frac{\partial R}{\partial c}}\bigg |_{c^0} \tilde{\alpha }+\int _0^1\delta (t-T)\tilde{\alpha }dt \end{aligned}$$
(47)
$$\begin{aligned}&N\tilde{c}:=-{\frac{\partial ^2 R}{\partial c^2}}\bigg |_{c^0}\tilde{c}\alpha ^0 +O^TO\int _0^1\delta (t-T)\tilde{c}dt \end{aligned}$$
(48)
$$\begin{aligned}&Z^T\tilde{k_f}:=-\nabla \cdot (\tilde{k_f}\mathbf{T}\nabla \alpha ^0) \end{aligned}$$
(49)
$$\begin{aligned}&g_p:=Bu-\varPhi ^T\alpha _0^0 \end{aligned}$$
(50)
$$\begin{aligned}&Bu:=(\beta _p + O_0^TO_0\varPhi )p \end{aligned}$$
(51)
$$\begin{aligned}&Z\tilde{c}:=\int _0^1\int _{\varOmega }(\mathbf{T}\nabla \tilde{c})\cdot (\nabla \alpha ^0)d\varOmega dt \end{aligned}$$
(52)
$$\begin{aligned}&W\tilde{\alpha }:=\int _0^1\int _{\varOmega }(\mathbf{T}\nabla c^0)\cdot (\nabla \tilde{\alpha })d\varOmega dt \end{aligned}$$
(53)
$$\begin{aligned}&g_{k}:=\int _0^1\int _{\varOmega }(\mathbf{T}\nabla c^0)\cdot (\nabla \alpha ^0)d\varOmega dt \end{aligned}$$
(54)
$$\begin{aligned}&J\tilde{c}:={\frac{\partial \tilde{c}}{\partial t}}-D\tilde{c}-{\frac{\partial R}{\partial c}}\bigg |_{c^0}\tilde{c}+\int _0^1\delta (t)\tilde{c}dt \end{aligned}$$
(55)
$$\begin{aligned}&W^T\tilde{k_f}:=-\nabla \cdot (\tilde{k_f}\mathbf{T}\nabla c^0) \end{aligned}$$
(56)

The reduced Hessians of Eq. 39 are defined as follows:

$$\begin{aligned}&H_{pp}=B + \varPhi ^TJ^{-T}NJ^{-1}\varPhi , \end{aligned}$$
(57)
$$\begin{aligned}&H_{pk}=-\varPhi ^TJ^{-T}(-Z^T+NJ^{-1}W^T), \end{aligned}$$
(58)
$$\begin{aligned}&H_{kp}=(Z-WJ^{-T}N)J^{-1}\varPhi , \end{aligned}$$
(59)
$$\begin{aligned}&H_{kk}=- ZJ^{-1}W^T+WJ^{-T}(-Z^T+NJ^{-1}W^T). \end{aligned}$$
(60)

To compute the matvec of \(H_{pp}\tilde{p}\) one needs to take the following steps:

  1. 1.

    \(J^{-1}\varPhi \):

    Solve Eq. 31 with \(\tilde{k_f}=0\) and initial condition of \(\tilde{c}_0=\varPhi \tilde{p}\) to get \(\tilde{c}\)

  2. 2.

    \(-J^{-T}NJ^{-1}\varPhi \):

    Solve Eq. 28 with \(\tilde{k_f}=0\) and initial condition of \(\tilde{\alpha }_1=-O^TO\tilde{c}_1\) to get \(\tilde{\alpha }\)

  3. 3.

    \(B+\varPhi ^TJ^{-T}NJ^{-1}\varPhi \):

    Compute \(-\varPhi ^T\alpha _0\) and add \(Bu\)

To compute the matvec of \(H_{pk}\tilde{k_f}\) one needs to take the following steps:

  1. 1.

    \(J^{-1}W^T\):

    Solve Eq. 31 with zero initial condition to get \(\tilde{c}\)

  2. 2.

    \(J^{-T}(-Z^T+NJ^{-1}W^T)\):

    Solve Eq. 28 with initial condition of \(\tilde{\alpha }_1=-O^TO\tilde{c}_1\) to get \(\tilde{\alpha }\)

  3. 3.

    \(-\varPhi ^TJ^{-T}(-Z^T+NJ^{-1}W^T)\):

    Compute \(-\varPhi ^T\alpha _0\)

To compute the matvec of \(H_{ku}\tilde{p}\) one needs to take the following steps:

  1. 1.

    \(J^{-1}\varPhi \):

    Solve Eq. 31 with \(\tilde{k_f}=0\) and initial condition of \(\tilde{c}_0=\varPhi \tilde{p}\) to get \(\tilde{c}\)

  2. 2.

    \(ZJ^{-1}\varPhi \):

    Compute \(\int _0^1\int _{\varOmega }(\mathbf{T}\nabla \tilde{c})\cdot (\nabla \alpha ^0)d\varOmega dt\)

  3. 3.

    \(-J^{-T}NJ^{-1}\varPhi \):

    Solve Eq. 28 with \(\tilde{k_f}=0\) and initial condition of \(\tilde{\alpha }_1=-O^TO\tilde{c}_1\) to get \(\tilde{\alpha }\)

  4. 4.

    \(-WJ^{-T}NJ^{-1}\varPhi \):

    Compute \(\int _0^1\int _{\varOmega }(\mathbf{T}\nabla c^0)\cdot (\nabla \tilde{\alpha })d\varOmega dt\)

  5. 5.

    Add 2 and 4

To compute the matvec of \(H_{kk}\tilde{k_f}\) one needs to take the following steps:

  1. 1.

    \(J^{-1}W^T\):

    Solve Eq. 31 with zero initial condition to get \(\tilde{c}\)

  2. 2.

    \(ZJ^{-1}W^T\):

    Compute \(\int _0^1\int _{\varOmega }(\mathbf{T}\nabla \tilde{c})\cdot (\nabla \alpha ^0)d\varOmega dt\)

  3. 3.

    \(J^{-T}(-Z^T+NJ^{-1}W^T)\):

    Solve Eq. 28 with initial condition of \(\tilde{\alpha }_1=-O^TO\tilde{c}_1\) to get \(\tilde{\alpha }\)

  4. 4.

    \(WJ^{-T}(-Z^T+NJ^{-1}W^T)\):

    Compute \(\int _0^1\int _{\varOmega }(\mathbf{T}\nabla c^0)\cdot (\nabla \tilde{\alpha })d\varOmega dt\)

  5. 5.

    Add 2 and 4.

Appendix B: Fictitious domain method

We use a fictitious domain method in which the original brain domain, \(\mathcal {B}\) , is extended to a cubic box, denoted by \(\varOmega \) (Hogea et al. 2008b; Mang et al. 2012; Tracqui et al. 1995). The original homogeneous boundary conditions imposed on \(\varGamma \) can be satisfied using a penalty method (Del Pino and Pironneau 2003). To do so we define a new diffusion coefficient \(\mathbf K_\epsilon (x)\), \(\mathbf{x}\in \varOmega \) as follows:

where the penalty parameter \(\epsilon \), is a small positive number. The actual boundary condition on \(\varGamma \) will be satisfied in the limit of \(\epsilon \rightarrow 0\) (Del Pino and Pironneau 2003). The original boundary conditions can be re-imposed on the extended cubic domain, \(\varOmega \), for both the forward Eq. 1 and adjoint equation Eq. 20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami, A., Mang, A. & Biros, G. An inverse problem formulation for parameter estimation of a reaction–diffusion model of low grade gliomas. J. Math. Biol. 72, 409–433 (2016). https://doi.org/10.1007/s00285-015-0888-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-015-0888-x

Keywords

Mathematics Subject Classification

Navigation