Skip to main content
Log in

Cell death in development, maintenance, and diseases of the nervous system

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Cell death, be it of neurons or glial cells, marks the development of the nervous system. Albeit relatively less so than in tissues such as the gut, cell death is also a feature of nervous system homeostasis—especially in context of adult neurogenesis. Finally, cell death is commonplace in acute brain injuries, chronic neurodegenerative diseases, and in some central nervous system tumors such as glioblastoma. Recent studies are enumerating the various molecular modalities involved in the execution of cells. Intimately linked with cell death are mechanisms of disposal that remove the dead cell and bring about a tissue-level response. Heretofore, the association between these methods of dying and physiological or pathological responses has remained nebulous. It is envisioned that careful cartography of death and disposal may reveal novel understandings of disease states and chart new therapeutic strategies in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Conradt B (2009) Genetic control of programmed cell death during animal development. Annu Rev Genet 43:493–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moorman S (2001) Development of sensory systems in zebrafish (Danio Rerio). ILAR J 42:292–298

    Article  CAS  PubMed  Google Scholar 

  3. Reyes R, Haendel M, Grant D, Melancon E, Eisen J (2004) Slow degeneration of zebrafish Rohon-Beard neurons during programmed cell death. Dev Dyn 229:30–41

    Article  PubMed  Google Scholar 

  4. Pop S, Chen C, Sproston C, Kondo S, Ramdya P, Williams D (2020) Extensive and diverse patterns of cell death sculpt neural networks in insects. Elife 9

  5. Prieto-Godino L, Silbering A, Khallaf M, Cruchet S, Bojkowska K, Pradervand S, Bs H, Knaden M, Benton R (2020) Functional integration of "undead" neurons in the olfactory system. Sci Adv 6:Eaaz7238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hamburger V (1992) History of the discovery of neuronal death in embryos. J Neurobiol 23:1116–1123

    Article  CAS  PubMed  Google Scholar 

  7. Levi-Montalcini Ral G (1943) Recherches Quantitatives Sur La Marche Du Processus De Différenciation Des Neurons Dans Les Ganglions Spinaux De L’embryon De Poulet. Arch Biol 54:189–206

    Google Scholar 

  8. Levi-Montalcini R, Cohen S (1956) In vitro and in vivo effects of a nerve growth-stimulating agent isolated from snake venom. Proc Natl Acad Sci U S A 42:695–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Levi-Montalcini R (1987) The nerve growth factor 35 years later. Science 237:1154–1162

    Article  CAS  PubMed  Google Scholar 

  10. Cordon-Cardo C, Tapley P, Sq J, Nanduri V, O'rourke E, Lamballe F, Kovary K, Klein R, Jones K, Reichardt L et al (1991) The Trk tyrosine protein kinase mediates the mitogenic properties of nerve growth factor and neurotrophin-3. Cell 66:173–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kaplan D, Martin-Zanca D, Parada L (1991) Tyrosine phosphorylation and tyrosine kinase activity of the Trk proto-oncogene product induced by Ngf. Nature 350:158–160

    Article  CAS  PubMed  Google Scholar 

  12. Deshmukh M, Johnson E Jr (1997) Programmed cell death in neurons: focus on the pathway of nerve growth factor deprivation-induced death of sympathetic neurons. Mol Pharmacol 51:897–906

    Article  CAS  PubMed  Google Scholar 

  13. Lee R, Kermani P, Kk T, Bl H (2001) Regulation of cell survival by secreted proneurotrophins. Science 294:1945–1948

    Article  CAS  PubMed  Google Scholar 

  14. Pathak A, Em S, Fe H, Wallace N, Brewer B, Li D, Gluska S, Perlson E, Fuhrmann S, Akassoglou K, Bronfman F, Casaccia P, Dt B, Carter B (2018) Retrograde degenerative signaling mediated by the P75 neurotrophin receptor requires P150(Glued) deacetylation by axonal Hdac1. Dev Cell 46(376-87):E7

    Google Scholar 

  15. Scott-Solomon E, Boehm E, Kuruvilla R (2021) The sympathetic nervous system in development and disease. Nat Rev Neurosci 22:685–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hamburger V, Levi-Montalcini R (1949) Proliferation, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. J Exp Zool 111:457–501

    Article  CAS  PubMed  Google Scholar 

  17. Roth K, Kuan C, Haydar T, D'sa-Eipper C, Shindler K, Zheng T, Kuida K, Flavell R, Rakic P (2000) Epistatic and independent functions of caspase-3 and Bcl-X(L) in developmental programmed cell death. Proc Natl Acad Sci U S A 97:466–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Urase K, Kouroku Y, Fujita E, Momoi T (2003) Region of caspase-3 activation and programmed cell death in the early development of the mouse forebrain. Brain Res Dev Brain Res 145:241–248

    Article  CAS  PubMed  Google Scholar 

  19. Wong F, Marin O (2019) Developmental cell death in the cerebral cortex. Annu Rev Cell Dev Biol 35:523–542

    Article  CAS  PubMed  Google Scholar 

  20. Southwell D, Paredes M, Galvao R, Jones D, Froemke R, Sebe J, Alfaro-Cervello C, Tang Y, Garcia-Verdugo J, Rubenstein J, Baraban S, Alvarez-Buylla A (2012) Intrinsically determined cell death of developing cortical interneurons. Nature 491:109–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nagy N, Goldstein A (2017) Enteric nervous system development: a crest cell's journey from neural tube to colon. Semin Cell Dev Biol 66:94–106

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wallace A, Barlow A, Navaratne L, Delalande J, Tauszig-Delamasure S, Corset V, Thapar N, Burns A (2009) Inhibition of cell death results in hyperganglionosis: implications for enteric nervous system development. Neurogastroenterol Motil 21:768–E49

    Article  CAS  PubMed  Google Scholar 

  23. Gianino S, Grider J, Cresswell J, Enomoto H, Heuckeroth R (2003) Gdnf availability determines enteric neuron number by controlling precursor proliferation. Development 130:2187–2198

    Article  CAS  PubMed  Google Scholar 

  24. Uesaka T, Jain S, Yonemura S, Uchiyama Y, Milbrandt J, Enomoto H (2007) Conditional ablation of Gfralpha1 In postmigratory enteric neurons triggers unconventional neuronal death in the colon and causes a Hirschsprung's disease phenotype. Development 134:2171–2181

    Article  CAS  PubMed  Google Scholar 

  25. Galluzzi L, Vitale I, Aaronson S, Abrams J, Adam D et al (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 25:486–541

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gagliardini V, Fernandez P, Lee R, Drexler H, Rotello R, Fishman M, Yuan J (1994) Prevention of vertebrate neuronal death by the Crma gene. Science 263:826–828

    Article  CAS  PubMed  Google Scholar 

  27. Lammert C, Frost E, Bellinger C, Bolte A, Mckee C, Hurt M, Paysour M, Ennerfelt H, Lukens J (2020) Aim2 inflammasome surveillance of Dna damage shapes neurodevelopment. Nature 580:647–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barres B, Hart I, Coles H, Burne J, Voyvodic J, Richardson W, Mc R (1992) Cell death and control of cell survival in the oligodendrocyte lineage. Cell 70:31–46

    Article  CAS  PubMed  Google Scholar 

  29. Sun L, Mulinyawe S, Collins H, Ibrahim A, Li Q, Simon D, Tessier-Lavigne M, Barres B (2018) Spatiotemporal control of Cns myelination by oligodendrocyte programmed cell death through the TFEB-PUMA axis. Cell 175(1811-26):E21

    Google Scholar 

  30. Krueger B, Burne J, Raff M (1995) Evidence for large-scale astrocyte death in the developing cerebellum. J Neurosci 15:3366–3374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Foo L, Allen N, Bushong E, Ventura P, Chung W, Zhou L, Cahoy J, Daneman R, Zong H, Ellisman M, Ba B (2011) Development of a method for the purification and culture of rodent astrocytes. Neuron 71:799–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Spalding K, Bhardwaj R, Buchholz B, Druid H, Frisen J (2005) Retrospective birth dating of cells in humans. Cell 122:133–143

    Article  CAS  PubMed  Google Scholar 

  33. Spalding K, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner H, Bostrom E, Westerlund I, Vial C, Buchholz B, Possnert G, Mash D, Druid H, Frisen J (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153:1219–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bhardwaj R, Curtis M, Spalding K, Buchholz B, Fink D, Bjork-Eriksson T, Nordborg C, Gage F, Druid H, Eriksson P, Frisen J (2006) Neocortical neurogenesis in humans is restricted to development. Proc Natl Acad Sci U S A 103:12564–12568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bergmann O, Liebl J, Bernard S, Alkass K, Yeung M, Steier P, Kutschera W, Johnson L, Landen M, Druid H, Spalding K, Frisen J (2012) The age of olfactory bulb neurons in humans. Neuron 74:634–639

    Article  CAS  PubMed  Google Scholar 

  36. Yeung M, Djelloul M, Steiner E, Bernard S, Salehpour M, Possnert G, Brundin L, Frisen J (2019) Dynamics of oligodendrocyte generation in multiple sclerosis. Nature 566:538–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Reu P, Khosravi A, Bernard S, Mold J, Salehpour M, Alkass K, Perl S, Tisdale J, Possnert G, Druid H, Frisen J (2017) The lifespan and turnover of microglia in the human brain. Cell Rep 20:779–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Parolisi R, Cozzi B, Bonfanti L (2018) Humans and dolphins: decline and fall of adult neurogenesis. Front Neurosci 12:497

    Article  PubMed  PubMed Central  Google Scholar 

  39. Alvarez D, Giacomini D, Yang S, Trinchero M, Temprana S, Buttner K, Beltramone N, Schinder A (2016) A disynaptic feedback network activated by experience promotes the integration of new granule cells. Science 354:459–465

    Article  CAS  PubMed  Google Scholar 

  40. Kobilo T, Liu Q, Gandhi K, Mughal M, Shaham Y, Van Praag H (2011) Running is the neurogenic and neurotrophic stimulus in environmental enrichment. Learn Mem 18:605–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ma D, Kim W, Ming G, Song H (2009) Activity-dependent extrinsic regulation of adult olfactory bulb and hippocampal neurogenesis. Ann N Y Acad Sci 1170:664–673

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sierra A, Encinas J, Deudero J, Chancey J, Enikolopov G, Overstreet-Wadiche L, Tsirka S, Maletic-Savatic M (2010) Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7:483–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fricker M, Neher J, Zhao J, Thery C, Tolkovsky A, Brown G (2012) Mfg-E8 mediates primary phagocytosis of viable neurons during neuroinflammation. J Neurosci 32:2657–2666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brown G, Neher J (2014) Microglial phagocytosis of live neurons. Nat Rev Neurosci 15:209–216

    Article  CAS  PubMed  Google Scholar 

  45. Hakim-Mishnaevski K, Flint-Brodsly N, Shklyar B, Levy-Adam F, Kurant E (2019) Glial phagocytic receptors promote neuronal loss in adult drosophila brain. Cell Rep 29(1438-48):E3

    Google Scholar 

  46. Neher J, Neniskyte U, Zhao J, Bal-Price A, Tolkovsky A, Brown G (2011) Inhibition of microglial phagocytosis is sufficient to prevent inflammatory neuronal death. J Immunol 186:4973–4983

    Article  CAS  PubMed  Google Scholar 

  47. Elmore M, Najafi A, Koike M, Dagher N, Spangenberg E, Rice R, Kitazawa M, Matusow B, Nguyen H, West B, Green K (2014) Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82:380–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhan L, Krabbe G, Du F, Jones I, Reichert M, Telpoukhovskaia M, Kodama L, Wang C, Cho S, Sayed F, Li Y, Le D, Zhou Y, Shen Y, West B, Gan L (2019) Proximal recolonization by self-renewing microglia re-establishes microglial homeostasis in the adult mouse brain. PLoS Biol 17:E3000134

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hohsfield L, Najafi A, Ghorbanian Y, Soni N, Crapser J, Figueroa Velez D, Jiang S, Royer S, Kim S, Henningfield C, Anderson A, Gandhi S, Mortazavi A, Inlay M, Green K (2021) Subventricular zone/white matter microglia reconstitute the empty adult microglial niche in a dynamic wave. Elife 10

  50. Konishi H, Okamoto T, Hara Y, Komine O, Tamada H, Maeda M, Osako F, Kobayashi M, Nishiyama A, Kataoka Y, Takai T, Udagawa N, Jung S, Ozato K, Tamura T, Tsuda M, Yamanaka K, Ogi T, Sato K, Kiyama H (2020) Astrocytic phagocytosis is a compensatory mechanism for microglial dysfunction. EMBO J 39:E104464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brouns R, Deyn D (2009) The complexity of neurobiological processes in acute ischemic stroke. Clin Neurol Neurosurg 111:483–495

    Article  CAS  PubMed  Google Scholar 

  52. Broughton B, Reutens D, Sobey C (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40:E331–E339

    Article  PubMed  Google Scholar 

  53. Zhang L, Qian Y, Li J, Zhou X, Xu H, Yan J, Xiang J, Yuan X, Sun B, Sisodia S, Jiang Y, Cao X, Jing N, Lin A (2021) Bad-mediated neuronal apoptosis and neuroinflammation contribute to Alzheimer's disease pathology. Iscience 24:102942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Parihar M, Parihar A, Fujita M, Hashimoto M, Ghafourifar P (2008) Mitochondrial association of alpha-synuclein causes oxidative stress. Cell Mol Life Sci 65:1272–1284

    Article  CAS  PubMed  Google Scholar 

  55. Gilkerson R, De La Torre P, St VS (2021) Mitochondrial OMA1 and OPA1 as gatekeepers of organellar structure/function and cellular stress response. Front Cell Dev Biol 9:626117

    Article  PubMed  PubMed Central  Google Scholar 

  56. Loucks F, Schroeder E, Zommer A, Hilger S, Kelsey N, Bouchard R, Blackstone C, Brewster J, Linseman D (2009) Caspases indirectly regulate cleavage of the mitochondrial fusion Gtpase Opa1 in neurons undergoing apoptosis. Brain Res 1250:63–74

    Article  CAS  PubMed  Google Scholar 

  57. Korwitz A, Merkwirth C, Richter-Dennerlein R, Troder S, Sprenger H, Quiros P, Lopez-Otin C, Rugarli E, Langer T (2016) Loss of Oma1 delays neurodegeneration by preventing stress-induced Opa1 processing in mitochondria. J Cell Biol 212:157–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Baburamani A, Hurling C, Stolp H, Sobotka K, Gressens P, Hagberg H, Thornton C (2015) Mitochondrial optic atrophy (Opa) 1 processing is altered in response to neonatal hypoxic-ischemic brain injury. Int J Mol Sci 16:22509–22526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny G, Mitchison T, Moskowitz M, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119

    Article  CAS  PubMed  Google Scholar 

  60. Yin B, Xu Y, Wei R, He F, Luo B, Wang J (2015) Inhibition of receptor-interacting protein 3 upregulation and nuclear translocation involved in Necrostatin-1 protection against hippocampal neuronal programmed necrosis induced by ischemia/reperfusion injury. Brain Res 1609:63–71

    Article  CAS  PubMed  Google Scholar 

  61. Vieira M, Fernandes J, Carreto L, Anuncibay-Soto B, Santos M, Han J, Fernandez-Lopez A, Duarte C, Carvalho A, Santos A (2014) Ischemic insults induce necroptotic cell death in hippocampal neurons through the up-regulation of endogenous Rip3. Neurobiol Dis 68:26–36

    Article  CAS  PubMed  Google Scholar 

  62. Caccamo A, Branca C, Piras I, Ferreira E, Huentelman M, Liang W, Readhead B, Dudley J, Spangenberg E, Green K, Belfiore R, Winslow W, Oddo S (2017) Necroptosis activation in Alzheimer's disease. Nat Neurosci 20:1236–1246

    Article  CAS  PubMed  Google Scholar 

  63. Jayaraman A, Htike T, James R, Picon C, Reynolds R (2021) Tnf-mediated neuroinflammation is linked to neuronal necroptosis in Alzheimer's disease hippocampus. Acta Neuropathol Commun 9:159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Newton K, Wickliffe K, Maltzman A, Dugger D, Reja R, Zhang Y, Roose-Girma M, Modrusan Z, Sagolla M, Webster J, Dixit V (2019) Activity of caspase-8 determines plasticity between cell death pathways. Nature 575:679–682

    Article  CAS  PubMed  Google Scholar 

  65. Iannielli A, Bido S, Folladori L, Segnali A, Cancellieri C, Maresca A, Massimino L, Rubio A, Morabito G, Caporali L, Tagliavini F, Musumeci O, Gregato G, Bezard E, Carelli V, Tiranti V, Broccoli V (2018) Pharmacological inhibition of necroptosis protects from dopaminergic neuronal cell death in Parkinson's disease models. Cell Rep 22:2066–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Re D, Le Verche V, Yu C, Amoroso M, Politi K, Phani S, Ikiz B, Hoffmann L, Koolen M, Nagata T, Papadimitriou D, Nagy P, Mitsumoto H, Kariya S, Wichterle H, Henderson C, Przedborski S (2014) Necroptosis drives motor neuron death in models of both sporadic and familial ALS. Neuron 81:1001–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ito Y, Ofengeim D, Najafov A, Das S, Saberi S, Li Y, Hitomi J, Zhu H, Chen H, Mayo L, Geng J, Amin P, Dewitt J, Mookhtiar A, Florez M, At O, Fan J, Pasparakis M, Kelliher M et al (2016) Ripk1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science 353:603–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Picon C, Jayaraman A, James R, Beck C, Gallego P, Me W, Van Horssen J, Mazarakis N, Reynolds R (2021) Neuron-specific activation of necroptosis signaling in multiple sclerosis cortical grey matter. Acta Neuropathol 141:585–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dixon S, Lemberg K, Lamprecht M, Skouta R, Zaitsev E, Gleason C, Patel D, Bauer A, Cantley A, Yang W, Morrison B 3rd, Stockwell B (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li J, Cao F, Yin H, Huang Z, Lin Z, Mao N, Sun B, Wang G (2020) Ferroptosis: past, present and future. Cell Death Dis 11:88

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bao W, Pang P, Zhou Xt HF, Xiong W, Chen K, Wang J, Wang F, Xie D, Hu Y, Han Z, Zhang H, Wang W, Nelson P, Chen J, Lu Y, Man H, Liu D, Lq Z (2021) Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer's disease. Cell Death Differ 28:1548–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Do Van B, Gouel F, Jonneaux A, Timmerman K, Gele P, Petrault M, Bastide M, Laloux C, Moreau C, Bordet R, Devos D, Devedjian J (2016) Ferroptosis, a newly characterized form of cell death in Parkinson's disease that is regulated by PKC. Neurobiol Dis 94:169–178

    Article  PubMed  Google Scholar 

  73. Wang T, Tomas D, Perera N, Cuic B, Luikinga S, Viden A, Barton S, Ca M, Samson A, Southon A, Bush A, Murphy J, Turner B (2021) Ferroptosis mediates selective motor neuron death in amyotrophic lateral sclerosis. Cell Death Differ

  74. Skouta R, Dixon S, Wang J, De D, Orman M, Shimada K, Rosenberg P, Lo D, Weinberg J, Linkermann A, Stockwell B (2014) Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc 136:4551–4556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Friedlander R, Brown R, Gagliardini V, Wang J, Yuan J (1997) Inhibition of ICE slows ALS in mice. Nature 388:31

    Article  CAS  PubMed  Google Scholar 

  76. Tan C, Zhang J, Tan M, Chen H, Meng D, Jiang T, Meng X, Li Y, Sun Z, Li M, Yu J, Tan L (2015) Nlrp1 inflammasome is activated in patients with medial temporal lobe epilepsy and contributes to neuronal pyroptosis in amygdala kindling-induced rat model. J Neuroinflammation 12:18

    Article  PubMed  PubMed Central  Google Scholar 

  77. Tan M, Tan L, Jiang T, Zhu X, Wang H, Jia C, Yu J (2014) Amyloid-beta induces Nlrp1-dependent neuronal pyroptosis in models of Alzheimer's disease. Cell Death Dis 5:E1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang Y, Kim N, Haince J, Kang H, David K, Andrabi S, Poirier G, Dawson V, Dawson T (2011) Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (Parthanatos). Sci Signal 4:Ra20

    Article  PubMed  PubMed Central  Google Scholar 

  79. Stoica B, Loane D, Zhao Z, Kabadi S, Hanscom M, Byrnes K, Faden A (2014) PARP-1 inhibition attenuates neuronal loss, microglia activation and neurological deficits after traumatic brain injury. J Neurotrauma 31:758–772

    Article  PubMed  PubMed Central  Google Scholar 

  80. Minambres E, Ballesteros M, Mayorga M, Marin M, Munoz P, Figols J, Lopez-Hoyos M (2008) Cerebral apoptosis in severe traumatic brain injury patients: an in vitro, in vivo, and postmortem study. J Neurotrauma 25:581–591

    Article  PubMed  Google Scholar 

  81. Yu W, Mechawar N, Krantic S, Quirion R (2010) Evidence for the involvement of apoptosis-inducing factor-mediated caspase-independent neuronal death in Alzheimer disease. Am J Pathol 176:2209–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kim T, Cho H, Choi S, Suguira Y, Hayasaka T, Setou M, Koh H, Em H, Park J, Kang S, Kim H, Kim H, Sun W (2013) (ADP-ribose) polymerase 1 and amp-activated protein kinase mediate progressive dopaminergic neuronal degeneration in a mouse model of Parkinson's disease. Cell Death Dis 4:E919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mandir A, Przedborski S, Jackson-Lewis V, Wang Z, Simbulan-Rosenthal C, Smulson M, Hoffman B, Guastella D, Dawson V, Dawson T (1999) Poly(ADP-ribose) Polymerase activation mediates 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Proc Natl Acad Sci U S A 96:5774–5779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lee Y, Karuppagounder S, Shin J, Lee Y, Ko H, Swing D, Jiang H, Kang S, Lee B, Kang H, Kim D, Tessarollo L, Dawson V, Dawson T (2013) Parthanatos mediates AIMP2-activated age-dependent dopaminergic neuronal loss. Nat Neurosci 16:1392–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shibata N, Kakita A, Takahashi H, Ihara Y, Nobukuni K, Fujimura H, Sakoda S, Sasaki S, Yamamoto T, Kobayashi M (2009) Persistent cleavage and nuclear translocation of apoptosis-inducing factor in motor neurons in the spinal cord of sporadic amyotrophic lateral sclerosis patients. Acta Neuropathol 118:755–762

    Article  CAS  PubMed  Google Scholar 

  86. Niu X, Huang H, Zhang J, Zhang C, Chen W, Sun C, Ding Y, Liao M (2016) Deletion of autophagy-related gene 7 in dopaminergic neurons prevents their loss induced by MPTP. Neuroscience 339:22–31

    Article  CAS  PubMed  Google Scholar 

  87. Ravikumar B, Duden R, Rubinsztein D (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11:1107–1117

    Article  CAS  PubMed  Google Scholar 

  88. Ravikumar B, Vacher C, Berger Z, Davies J, Luo S, Oroz L, Scaravilli F, Easton D, Duden R, O'kane C, Rubinsztein D (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595

    Article  CAS  PubMed  Google Scholar 

  89. Du H, Guo L, Fang F, Chen D, Sosunov A, Mckhann G, Yan Y, Wang C, Zhang H, Molkentin J, Gunn-Moore F, Vonsattel J, Arancio O, Chen J, Yan S (2008) Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease. Nat Med 14:1097–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gomez-Sintes R, Ledesma M, Boya P (2016) Lysosomal cell death mechanisms in aging. Ageing Res Rev 32:150–168

    Article  CAS  PubMed  Google Scholar 

  91. Serrano-Puebla A, Boya P (2016) Lysosomal membrane permeabilization in cell death: new evidence and implications for health and disease. Ann N Y Acad Sci 1371:30–44

    Article  PubMed  Google Scholar 

  92. Mahul-Mellier A, Hemming F, Blot B, Fraboulet S, Sadoul R (2006) Alix, making a link between apoptosis-linked gene-2, the endosomal sorting complexes required for transport, and neuronal death in vivo. J Neurosci 26:542–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hemming F, Fraboulet S, Blot B, Sadoul R (2004) Early increase of apoptosis-linked gene-2 interacting protein X in areas of kainate-induced neurodegeneration. Neuroscience 123:887–895

    Article  CAS  PubMed  Google Scholar 

  94. Blum D, Hemming F, Galas M, Torch S, Cuvelier L, Schiffmann S, Sadoul R (2004) Increased alix (apoptosis-linked gene-2 interacting protein X) immunoreactivity in the degenerating striatum of rats chronically treated by 3-nitropropionic acid. Neurosci Lett 368:309–313

    Article  CAS  PubMed  Google Scholar 

  95. Fricker M, Tolkovsky A, Borutaite V, Coleman M, Brown G (2018) Neuronal cell death. Physiol Rev 98:813–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Caprariello A, Mangla S, Miller R, Selkirk S (2012) Apoptosis of oligodendrocytes in the central nervous system results in rapid focal demyelination. Ann Neurol 72:395–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dent K, Christie K, Bye N, Basrai H, Turbic A, Habgood M, Cate H, Turnley A (2015) Oligodendrocyte birth and death following traumatic brain injury in adult mice. PLoS One 10:E0121541

    Article  PubMed  PubMed Central  Google Scholar 

  98. Liu M, Qin L, Wang L, Tan J, Zhang H, Tang J, Shen X, Tan L, Wang C (2018) Alphasynuclein induces apoptosis of astrocytes by causing dysfunction of the endoplasmic reticulumgolgi compartment. Mol Med Rep 18:322–332

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Jung D, Lee H, Jung B, Ock J, Lee M, Lee W, Suk K (2005) Tlr4, but not Tlr2, signals autoregulatory apoptosis of cultured microglia: a critical role of Ifn-beta as a decision maker. J Immunol 174:6467–6476

    Article  CAS  PubMed  Google Scholar 

  100. Ofengeim D, Ito Y, Najafov A, Zhang Y, Shan B, Dewitt J, Ye J, Zhang X, Chang A, Vakifahmetoglu-Norberg H, Geng J, Py B, Zhou W, Amin P, Berlink Lima J, Qi C, Yu Q, Trapp B, Yuan J (2015) Activation of necroptosis in multiple sclerosis. Cell Rep 10:1836–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fan H, Zhang K, Shan L, Kuang F, Chen K, Zhu K, Ma H, Ju G, Wang Y (2016) Reactive astrocytes undergo M1 microglia/macrohpages-induced necroptosis in spinal cord injury. Mol Neurodegener 11:14

    Article  PubMed  PubMed Central  Google Scholar 

  102. Jhelum P, Santos-Nogueira E, Teo W, Haumont A, Lenoel I, Stys P, David S (2020) Ferroptosis mediates cuprizone-induced loss of oligodendrocytes and demyelination. J Neurosci 40:9327–9341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Brat D, Castellano-Sanchez A, Hunter S, Pecot M, Cohen C, Hammond E, Devi S, Kaur B, Van Meir E (2004) Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res 64:920–927

    Article  CAS  PubMed  Google Scholar 

  104. Markwell S, Ross J, Olson C, Brat D (2022) Necrotic reshaping of the glioma microenvironment drives disease progression. Acta Neuropathol

  105. Yee P, Wei Y, Kim S, Lu T, Chih S, Lawson C, Tang M, Liu Z, Anderson B, Thamburaj K, Young M, Aregawi D, Glantz M, Zacharia B, Specht C, Wang H, Li W (2020) Neutrophil-induced ferroptosis promotes tumor necrosis in glioblastoma progression. Nat Commun 11:5424

    Article  PubMed  PubMed Central  Google Scholar 

  106. Norris G, Kipnis J (2019) Immune cells and Cns physiology: microglia and beyond. J Exp Med 216:60–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cugurra A, Mamuladze T, Rustenhoven J, Dykstra T, Beroshvili G, Greenberg Z, Baker W, Papadopoulos Z, Drieu A, Blackburn S, Kanamori M, Brioschi S, Herz J, Schuettpelz L, Colonna M, Smirnov I, Kipnis J (2021) Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science 373

  108. Brioschi S, Zhou Y, Colonna M (2020) Brain parenchymal and extraparenchymal macrophages in development, homeostasis, and disease. J Immunol 204:294–305

    Article  CAS  PubMed  Google Scholar 

  109. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler M, Conway S, Ng L, Stanley E, Samokhvalov I, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Menassa D, Gomez-Nicola D (2018) Microglial dynamics during human brain development. Front Immunol 9:1014

    Article  PubMed  PubMed Central  Google Scholar 

  111. Hughes L, Wang Y, Meli A, Rothlin C, Ghosh S (2021) Decoding cell death: from a veritable library of babel to vade mecum? Annu Rev Immunol 39:791–817

    Article  CAS  PubMed  Google Scholar 

  112. Ferrer I, Bernet E, Soriano E, Del Rio T, Fonseca M (1990) Naturally occurring cell death in the cerebral cortex of the rat and removal of dead cells by transitory phagocytes. Neuroscience 39:451–458

    Article  CAS  PubMed  Google Scholar 

  113. Perez-Pouchoulen M, Vanryzin J, Mccarthy M (2015) Morphological and phagocytic profile of microglia in the developing rat cerebellum. Eneuro 2

  114. Marin-Teva J, Dusart I, Colin C, Gervais A, Van Rooijen N, Mallat M (2004) Microglia promote the death of developing purkinje cells. Neuron 41:535–547

    Article  CAS  PubMed  Google Scholar 

  115. Wakselman S, Bechade C, Roumier A, Bernard D, Triller A, Bessis A (2008) Developmental neuronal death in hippocampus requires the microglial Cd11b integrin and Dap12 immunoreceptor. J Neurosci 28:8138–8143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cunningham C, Martinez-Cerdeno V, Sc N (2013) Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci 33:4216–4233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Fourgeaud L, Traves P, Tufail Y, Leal-Bailey H, Lew E, Burrola P, Callaway P, Zagorska A, Rothlin C, Nimmerjahn A, Lemke G (2016) Tam receptors regulate multiple features of microglial physiology. Nature 532:240–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Anderson S, Zhang J, Steele M, Romero C, Kautzman A, Schafer D, Vetter M (2019) Complement targets newborn retinal ganglion cells for phagocytic elimination by microglia. J Neurosci 39:2025–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Stephan A, Barres B, Stevens B (2012) The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci 35:369–389

    Article  CAS  PubMed  Google Scholar 

  120. Baker M, Mackenzie I, Pickering-Brown S, Gass J, Rademakers R, Lindholm C, Snowden J, Adamson J, Sadovnick A, Rollinson S, Cannon A, Dwosh E, Neary D, Melquist S, Richardson A, Dickson D, Berger Z, Eriksen J, Robinson T et al (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442:916–919

    Article  CAS  PubMed  Google Scholar 

  121. Cruts M, Gijselinck I, Van Der Zee J, Engelborghs S, Wils H, Pirici D, Rademakers R, Vandenberghe R, Dermaut B, Martin J, Van Duijn C, Peeters K, Sciot R, Santens P, De Pooter T, Mattheijssens M, Van Den Broeck M, Cuijt I, Vennekens K et al (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442:920–924

    Article  CAS  PubMed  Google Scholar 

  122. Neniskyte U, Neher J, Brown G (2011) Neuronal death induced by nanomolar amyloid beta is mediated by primary phagocytosis of neurons by microglia. J Biol Chem 286:39904–39913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Neniskyte U, Brown G (2013) Lactadherin/Mfg-E8 is essential for microglia-mediated neuronal loss and phagoptosis induced by amyloid beta. J Neurochem 126:312–317

    Article  CAS  PubMed  Google Scholar 

  124. Zhang W, Phillips K, Wielgus A, Liu J, Albertini A, Zucca F, Faust R, Qian S, Miller D, Chignell C, Wilson B, Jackson-Lewis V, Przedborski S, Joset D, Loike J, Hong J, Sulzer D, Zecca L (2011) Neuromelanin activates microglia and induces degeneration of dopaminergic neurons: implications for progression of Parkinson's disease. Neurotox Res 19:63–72

    Article  PubMed  Google Scholar 

  125. Kopatz J, Beutner C, Welle K, Lg B, Reinhardt J, Claude J, Linnartz-Gerlach B, Neumann H (2013) Siglec-H on activated microglia for recognition and engulfment of glioma cells. Glia 61:1122–1133

    Article  PubMed  Google Scholar 

  126. Kana V, Desland F, Casanova-Acebes M, Ayata P, Badimon A, Nabel E, Yamamuro K, Sneeboer M, Tan I, Flanigan M, Rose S, Chang C, Leader A, Le Bourhis H, Sweet E, Tung N, Wroblewska A, Lavin Y, See P et al (2019) Csf-1 controls cerebellar microglia and is required for motor function and social interaction. J Exp Med 216:2265–2281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Tk U, David E, Baruch K, Lara-Astaiso D, Toth B, Itzkovitz S, Colonna M, Schwartz M, Amit I (2017) A unique microglia type associated with restricting development of Alzheimer's disease. Cell 169(1276-90):E17

    Google Scholar 

  128. Deczkowska A, Keren-Shaul H, Weiner A, Colonna M, Schwartz M, Amit I (2018) Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell 173:1073–1081

    Article  CAS  PubMed  Google Scholar 

  129. Chen Y, Colonna M (2021) Microglia in Alzheimer's disease at single-cell level. are there common patterns in humans and mice? J Exp Med 218

  130. Butovsky O, Weiner H (2018) Microglial signatures and their role in health and disease. Nat Rev Neurosci 19:622–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Damisah E, Hill R, Rai A, Chen F, Rothlin C, Ghosh S, Grutzendler J (2020) Astrocytes and microglia play orchestrated roles and respect phagocytic territories during neuronal corpse removal in vivo. Sci Adv 6:Eaba3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Morizawa Y, Hirayama Y, Ohno N, Shibata S, Shigetomi E, Sui Y, Nabekura J, Sato K, Okajima F, Takebayashi H, Okano H, Koizumi S (2017) Reactive astrocytes function as phagocytes after brain ischemia via abca1-mediated pathway. Nat Commun 8:28

    Article  PubMed  PubMed Central  Google Scholar 

  133. Lee J, Kim J, Noh S, Lee H, Lee S, Mun J, Park H, Chung W (2021) Astrocytes phagocytose adult hippocampal synapses for circuit homeostasis. Nature 590:612–617

    Article  CAS  PubMed  Google Scholar 

  134. Chung W, Allen N, Eroglu C (2015) Astrocytes control synapse formation, function, and elimination. Cold Spring Harb Perspect Biol 7:A020370

    Article  PubMed  PubMed Central  Google Scholar 

  135. Sancho L, Contreras M, Allen N (2021) Glia as sculptors of synaptic plasticity. Neurosci Res 167:17–29

    Article  CAS  PubMed  Google Scholar 

  136. Hong S, Dissing-Olesen L, Stevens B (2016) New insights on the role of microglia in synaptic pruning in health and disease. Curr Opin Neurobiol 36:128–134

    Article  CAS  PubMed  Google Scholar 

  137. Schilling M, Besselmann M, Muller M, Strecker J, Ringelstein E, Kiefer R (2005) Predominant phagocytic activity of resident microglia over hematogenous macrophages following transient focal cerebral ischemia: an investigation using green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 196:290–297

    Article  CAS  PubMed  Google Scholar 

  138. Chang C, Goods B, Askenase M, Hammond M, Renfroe S, Steinschneider A, Landreneau M, Ai Y, Beatty H, Da Costa L, Mack M, Sheth K, Greer D, Huttner A, Coman D, Hyder F, Ghosh S, Rothlin C, Love J, Sansing L (2018) Erythrocyte efferocytosis modulates macrophages towards recovery after intracerebral hemorrhage. J Clin Invest 128:607–624

    Article  PubMed  Google Scholar 

  139. Wang Y, Ulland T, Ulrich J, Song W, Tzaferis J, Hole J, Yuan P, Mahan T, Shi Y, Gilfillan S, Cella M, Grutzendler J, Demattos R, Cirrito J, Holtzman D, Colonna M (2016) Trem2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. J Exp Med 213:667–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Chen Z, Feng X, Herting C, Garcia V, Nie K, Pong W, Rasmussen R, Dwivedi B, Seby S, Wolf S, Gutmann D, Hambardzumyan D (2017) Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Cancer Res 77:2266–2278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Anghileri E, Patane M, Di Ianni N, Sambruni I, Maffezzini M, Milani M, Maddaloni L, Pollo B, Eoli M, Pellegatta S. 2021. Deciphering the labyrinthine system of the immune microenvironment in recurrent glioblastoma: recent original advances and lessons from clinical immunotherapeutic approaches. Cancers (Basel) 13

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla V. Rothlin.

Ethics declarations

Competing interests

C.V.R is a scientific founder and member of the Scientific Advisory Board (SAB) of Surface Oncology, a member of Janssen Immunology SAB, and a consultant for the Roche Immunology Incubator. C.V.R and S.G. have received grant support from Mirati Therapeutics. All other authors declare no competing interests.

Additional information

This article is a contribution to the special issue on: Neuroimmune Interactions in Health and Disease - Guest Editors: David Hafler & Lauren Sansing

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mercau, M.E., Patwa, S., Bhat, K.P.L. et al. Cell death in development, maintenance, and diseases of the nervous system. Semin Immunopathol 44, 725–738 (2022). https://doi.org/10.1007/s00281-022-00938-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-022-00938-4

Keywords

Navigation