Skip to main content

Advertisement

Log in

A bavachinin analog, D36, induces cell death by targeting both autophagy and apoptosis pathway in acute myeloid leukemia cells

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Acute myeloid leukemia (AML) is an aggressive hematologic malignancy with high mortality, and it is urgent to find new and optimized treatment strategies for AML. In this study, bavachinin, isolated from Psoralea corylifolia L. exhibiting extensive anti-tumor activity in many solid tumors and a series of its synthesized analogs, were screened for their anti-cancer activity on AML cell lines.

Methods

The cell viability of AML cells was measured using CCK-8 assays. Cell apoptosis and cell cycle were detected by flow cytometry. The expression of apoptosis-related protein and autophagy-related protein/gene was detected by western blot, immunofluorescence or RT-PCR. Subcutaneous mice tumor model was used to evaluate the anti-cancer activity of D36 in vivo.

Results

D36 robustly induced AML cells death in a dose-dependent manner with the IC50 value of 1.0 μM for HL-60 cells and 0.81 μM for MV4-11 cells at 24 h. D36 activated autophagy by inducing the accumulation of LC3B and promoting the autophagy flux. In addition, D36 triggered the extrinsic apoptosis by upregulating the protein level of FAS, cleaved-caspase 8, cleaved-caspase 3 and cleaved-PARP. D36 also blocked the cell cycle at S phase or G2/M phase in AML cells. In addition, we find that activation of caspase cascade induced apoptosis and meanwhile activated autophagy, autophagy activation in turns contributes to apoptosis. Furthermore, D36 suppressed the tumor growth in HL-60 AML-bearing mice without obvious side effects.

Conclusion

This study suggests that D36 is a promising small-molecule for the treatment of acute myeloid leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study may be available from the corresponding author upon request.

References

  1. Short NJ, Rytting ME, Cortes JE (2018) Acute myeloid leukaemia. Lancet 392:593–606. https://doi.org/10.1016/s0140-6736(18)31041-9

    Article  PubMed  Google Scholar 

  2. Döhner H, Weisdorf DJ, Bloomfield CD (2015) Acute myeloid leukemia. N Engl J Med 373:1136–1152. https://doi.org/10.1056/NEJMra1406184

    Article  CAS  PubMed  Google Scholar 

  3. Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, Dombret H, Ebert BL, Fenaux P, Larson RA, Levine RL, Lo-Coco F, Naoe T, Niederwieser D, Ossenkoppele GJ, Sanz M, Sierra J, Tallman MS, Tien HF, Wei AH, Löwenberg B, Bloomfield CD (2017) Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 129:424–447. https://doi.org/10.1182/blood-2016-08-733196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. De Kouchkovsky I, Abdul-Hay M (2016) Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J 6:e441. https://doi.org/10.1038/bcj.2016.50

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kantarjian H, Kadia T, DiNardo C, Daver N, Borthakur G, Jabbour E, Garcia-Manero G, Konopleva M, Ravandi F (2021) Acute myeloid leukemia: current progress and future directions. Blood Cancer J 11:41. https://doi.org/10.1038/s41408-021-00425-3

    Article  PubMed  PubMed Central  Google Scholar 

  6. Daver N, Schlenk RF, Russell NH, Levis MJ (2019) Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia 33:299–312. https://doi.org/10.1038/s41375-018-0357-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu M, Li C, Zhu X (2018) FLT3 inhibitors in acute myeloid leukemia. J Hematol Oncol 11:133. https://doi.org/10.1186/s13045-018-0675-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roboz GJ, DiNardo CD, Stein EM, de Botton S, Mims AS, Prince GT, Altman JK, Arellano ML, Donnellan W, Erba HP, Mannis GN, Pollyea DA, Stein AS, Uy GL, Watts JM, Fathi AT, Kantarjian HM, Tallman MS, Choe S, Dai D, Fan B, Wang H, Zhang V, Yen KE, Kapsalis SM, Hickman D, Liu H, Agresta SV, Wu B, Attar EC, Stone RM (2020) Ivosidenib induces deep durable remissions in patients with newly diagnosed IDH1-mutant acute myeloid leukemia. Blood 135:463–471. https://doi.org/10.1182/blood.2019002140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pollyea DA, Tallman MS, de Botton S, Kantarjian HM, Collins R, Stein AS, Frattini MG, Xu Q, Tosolini A, See WL, MacBeth KJ, Agresta SV, Attar EC, DiNardo CD, Stein EM (2019) Enasidenib, an inhibitor of mutant IDH2 proteins, induces durable remissions in older patients with newly diagnosed acute myeloid leukemia. Leukemia 33:2575–2584. https://doi.org/10.1038/s41375-019-0472-2

    Article  CAS  PubMed  Google Scholar 

  10. DiNardo CD, Stein EM, de Botton S, Roboz GJ, Altman JK, Mims AS, Swords R, Collins RH, Mannis GN, Pollyea DA, Donnellan W, Fathi AT, Pigneux A, Erba HP, Prince GT, Stein AS, Uy GL, Foran JM, Traer E, Stuart RK, Arellano ML, Slack JL, Sekeres MA, Willekens C, Choe S, Wang H, Zhang V, Yen KE, Kapsalis SM, Yang H, Dai D, Fan B, Goldwasser M, Liu H, Agresta S, Wu B, Attar EC, Tallman MS, Stone RM, Kantarjian HM (2018) Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med 378:2386–2398. https://doi.org/10.1056/NEJMoa1716984

    Article  CAS  PubMed  Google Scholar 

  11. Stein EM, DiNardo CD, Pollyea DA, Fathi AT, Roboz GJ, Altman JK, Stone RM, DeAngelo DJ, Levine RL, Flinn IW, Kantarjian HM, Collins R, Patel MR, Frankel AE, Stein A, Sekeres MA, Swords RT, Medeiros BC, Willekens C, Vyas P, Tosolini A, Xu Q, Knight RD, Yen KE, Agresta S, de Botton S, Tallman MS (2017) Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 130:722–731. https://doi.org/10.1182/blood-2017-04-779405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Short NJ, Konopleva M, Kadia TM, Borthakur G, Ravandi F, DiNardo CD, Daver N (2020) Advances in the treatment of acute myeloid leukemia: new drugs and new challenges. Cancer Discov 10:506–525. https://doi.org/10.1158/2159-8290.Cd-19-1011

    Article  CAS  PubMed  Google Scholar 

  13. Testa U, Riccioni R (2007) Deregulation of apoptosis in acute myeloid leukemia. Haematologica 92:81–94. https://doi.org/10.3324/haematol.10279

    Article  CAS  PubMed  Google Scholar 

  14. Konopleva M, Letai A (2018) BCL-2 inhibition in AML: an unexpected bonus? Blood 132:1007–1012. https://doi.org/10.1182/blood-2018-03-828269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wei AH, Montesinos P, Ivanov V, DiNardo CD, Novak J, Laribi K, Kim I, Stevens DA, Fiedler W, Pagoni M, Samoilova O, Hu Y, Anagnostopoulos A, Bergeron J, Hou JZ, Murthy V, Yamauchi T, McDonald A, Chyla B, Gopalakrishnan S, Jiang Q, Mendes W, Hayslip J, Panayiotidis P (2020) Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: a phase 3 randomized placebo-controlled trial. Blood 135:2137–2145. https://doi.org/10.1182/blood.2020004856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. DiNardo CD, Pratz K, Pullarkat V, Jonas BA, Arellano M, Becker PS, Frankfurt O, Konopleva M, Wei AH, Kantarjian HM, Xu T, Hong WJ, Chyla B, Potluri J, Pollyea DA, Letai A (2019) Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood 133:7–17. https://doi.org/10.1182/blood-2018-08-868752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pollyea DA, Amaya M, Strati P, Konopleva MY (2019) Venetoclax for AML: changing the treatment paradigm. Blood Adv 3:4326–4335. https://doi.org/10.1182/bloodadvances.2019000937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721. https://doi.org/10.1126/science.290.5497.1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nat Rev Cancer 7:961–967. https://doi.org/10.1038/nrc2254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42. https://doi.org/10.1016/j.cell.2007.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Al-Bari MAA, Ito Y, Ahmed S, Radwan N, Ahmed HS, Eid N (2021) Targeting autophagy with natural products as a potential therapeutic approach for cancer. Int J Mol Sci 22:9807. https://doi.org/10.3390/ijms22189807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Amaravadi RK, Kimmelman AC, Debnath J (2019) Targeting autophagy in cancer: recent advances and future directions. Cancer Discov 9:1167–1181. https://doi.org/10.1158/2159-8290.Cd-19-0292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang L, Qiang P, Yu J, Miao Y, Chen Z, Qu J, Zhao Q, Chen Z, Liu Y, Yao X, Liu B, Cui L, Jing H, Sun G (2019) Identification of compound CA-5f as a novel late-stage autophagy inhibitor with potent anti-tumor effect against non-small cell lung cancer. Autophagy 15:391–406. https://doi.org/10.1080/15548627.2018.1511503

    Article  CAS  PubMed  Google Scholar 

  24. Wang G, Zhou P, Chen X, Zhao L, Tan J, Yang Y, Fang Y, Zhou J (2017) The novel autophagy inhibitor elaiophylin exerts antitumor activity against multiple myeloma with mutant TP53 in part through endoplasmic reticulum stress-induced apoptosis. Cancer Biol Ther 18:584–595. https://doi.org/10.1080/15384047.2017.1345386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao X, Fang Y, Yang Y, Qin Y, Wu P, Wang T, Lai H, Meng L, Wang D, Zheng Z, Lu X, Zhang H, Gao Q, Zhou J, Ma D (2015) Elaiophylin, a novel autophagy inhibitor, exerts antitumor activity as a single agent in ovarian cancer cells. Autophagy 11:1849–1863. https://doi.org/10.1080/15548627.2015.1017185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yuan N, Song L, Zhang S, Lin W, Cao Y, Xu F, Fang Y, Wang Z, Zhang H, Li X, Wang Z, Cai J, Wang J, Zhang Y, Mao X, Zhao W, Hu S, Chen S, Wang J (2015) Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia. Haematologica 100:345–356. https://doi.org/10.3324/haematol.2014.113324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lao Y, Wan G, Liu Z, Wang X, Ruan P, Xu W, Xu D, Xie W, Zhang Y, Xu H, Xu N (2014) The natural compound oblongifolin C inhibits autophagic flux and enhances antitumor efficacy of nutrient deprivation. Autophagy 10:736–749. https://doi.org/10.4161/auto.28034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Piya S, Andreeff M, Borthakur G (2017) Targeting autophagy to overcome chemoresistance in acute myleogenous leukemia. Autophagy 13:214–215. https://doi.org/10.1080/15548627.2016.1245263

    Article  CAS  PubMed  Google Scholar 

  29. Zhou J, Li G, Zheng Y, Shen HM, Hu X, Ming QL, Huang C, Li P, Gao N (2015) A novel autophagy/mitophagy inhibitor liensinine sensitizes breast cancer cells to chemotherapy through DNM1L-mediated mitochondrial fission. Autophagy 11:1259–1279. https://doi.org/10.1080/15548627.2015.1056970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wakita M, Takahashi A, Sano O, Loo TM, Imai Y, Narukawa M, Iwata H, Matsudaira T, Kawamoto S, Ohtani N, Yoshimori T, Hara E (2020) A BET family protein degrader provokes senolysis by targeting NHEJ and autophagy in senescent cells. Nat Commun 11:1935. https://doi.org/10.1038/s41467-020-15719-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu XJ, Wang LN, Zhang ZH, Liang C, Li Y, Luo JS, Peng CJ, Zhang XL, Ke ZY, Huang LB, Tang YL, Luo XQ (2020) Arsenic trioxide induces autophagic degradation of the FLT3-ITD mutated protein in FLT3-ITD acute myeloid leukemia cells. J Cancer 11:3476–3482. https://doi.org/10.7150/jca.29751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin SR, Fu YS, Tsai MJ, Cheng H, Weng CF (2017) Natural compounds from herbs that can potentially execute as autophagy inducers for cancer therapy. Int J Mol Sci 18:1412. https://doi.org/10.3390/ijms18071412

    Article  CAS  PubMed Central  Google Scholar 

  33. Gao J, Fan M, Peng S, Zhang M, Xiang G, Li X, Guo W, Sun Y, Wu X, Wu X, Liang G, Shen Y, Xu Q (2017) Small-molecule RL71-triggered excessive autophagic cell death as a potential therapeutic strategy in triple-negative breast cancer. Cell Death Dis 8:e3049. https://doi.org/10.1038/cddis.2017.444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Larrue C, Saland E, Boutzen H, Vergez F, David M, Joffre C, Hospital MA, Tamburini J, Delabesse E, Manenti S, Sarry JE, Récher C (2016) Proteasome inhibitors induce FLT3-ITD degradation through autophagy in AML cells. Blood 127:882–892. https://doi.org/10.1182/blood-2015-05-646497

    Article  CAS  PubMed  Google Scholar 

  35. Chen YJ, Huang WP, Yang YC, Lin CP, Chen SH, Hsu ML, Tseng YJ, Shieh HR, Chen YY, Lee JJ (2009) Platonin induces autophagy-associated cell death in human leukemia cells. Autophagy 5:173–183. https://doi.org/10.4161/auto.5.2.7360

    Article  CAS  PubMed  Google Scholar 

  36. Fan J, Ren D, Wang J, Liu X, Zhang H, Wu M, Yang G (2020) Bruceine D induces lung cancer cell apoptosis and autophagy via the ROS/MAPK signaling pathway in vitro and in vivo. Cell Death Dis 11:126. https://doi.org/10.1038/s41419-020-2317-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ge LN, Yan L, Li C, Cheng K (2019) Bavachinin exhibits antitumor activity against non-small cell lung cancer by targeting PPARγ. Mol Med Rep 20:2805–2811. https://doi.org/10.3892/mmr.2019.10485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Darzi S, Mirzaei SA, Elahian F, Shirian S, Peymani A, Rahmani B, Dibazar SP, Aali E (2019) Enhancing the therapeutic efficacy of daunorubicin and mitoxantrone with bavachinin, candidone, and tephrosin. Evid Based Complement Alternat Med 2019:3291737. https://doi.org/10.1155/2019/3291737

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gupta N, Qayum A, Raina A, Shankar R, Gairola S, Singh S, Sangwan PL (2018) Synthesis and biological evaluation of novel bavachinin analogs as anticancer agents. Eur J Med Chem 145:511–523. https://doi.org/10.1016/j.ejmech.2018.01.006

    Article  CAS  PubMed  Google Scholar 

  40. Nepal M, Choi HJ, Choi BY, Kim SL, Ryu JH, Kim DH, Lee YH, Soh Y (2012) Anti-angiogenic and anti-tumor activity of Bavachinin by targeting hypoxia-inducible factor-1α. Eur J Pharmacol 691:28–37. https://doi.org/10.1016/j.ejphar.2012.06.028

    Article  CAS  PubMed  Google Scholar 

  41. Zhao C, Ghosh B, Chakraborty T, Roy S (2021) Bavachinin mitigates DMH induced colon cancer in rats by altering p53/Bcl2/BAX signaling associated with apoptosis. Biotech Histochem 96:179–190. https://doi.org/10.1080/10520295.2020.1778087

    Article  CAS  PubMed  Google Scholar 

  42. Du G, Zhao Y, Feng L, Yang Z, Shi J, Huang C, Li B, Guo F, Zhu W, Li Y (2017) Design, synthesis, and structure-activity relationships of bavachinin analogues as peroxisome proliferator-activated receptor γ agonists. ChemMedChem 12:183–193. https://doi.org/10.1002/cmdc.201600554

    Article  CAS  PubMed  Google Scholar 

  43. Yi J, Du G, Zhao Y, Zhang L, Li B, Zhu W, Huang C, Li Y, Guo F (2018) Bavachinin analogues as agonists of pan-peroxisome proliferator-activated receptors. Med Chem Res 27:1851–1862. https://doi.org/10.1007/s00044-018-2197-6

    Article  CAS  Google Scholar 

  44. Li C, Cao H, Sun J, Tian R, Li D, Qi Y, Yang W, Li J (2017) Antileukemic activity of an arsenomolybdate in the human HL-60 and U937 leukemia cells. J Inorg Biochem 168:67–75. https://doi.org/10.1016/j.jinorgbio.2016.12.002

    Article  CAS  PubMed  Google Scholar 

  45. Yu M, Fang Z-X, Wang W-W, Zhang Y, Bu Z-L, Liu M, Xiao X-H, Zhang Z-L, Zhang X-M, Cao Y, Wang Y-Y, Lei H, Xu H-Z, Wu Y-Z, Liu W, Wu Y-L (2021) Wu-5, a novel USP10 inhibitor, enhances crenolanib-induced FLT3-ITD-positive AML cell death via inhibiting FLT3 and AMPK pathways. Acta Pharmacol Sin 42(4):604–612. https://doi.org/10.1038/s41401-020-0455-x

    Article  CAS  PubMed  Google Scholar 

  46. Jang JE, Eom JI, Jeung HK, Cheong JW, Lee JY, Kim JS, Min YH (2017) Targeting AMPK-ULK1-mediated autophagy for combating BET inhibitor resistance in acute myeloid leukemia stem cells. Autophagy 13:761–762. https://doi.org/10.1080/15548627.2016.1278328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jung S, Jeong H, Yu SW (2020) Autophagy as a decisive process for cell death. Exp Mol Med 52:921–930. https://doi.org/10.1038/s12276-020-0455-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sun D, Tao W, Zhang F, Shen W, Tan J, Li L, Meng Q, Chen Y, Yang Y, Cheng H (2020) Trifolirhizin induces autophagy-dependent apoptosis in colon cancer via AMPK/mTOR signaling. Signal Transduct Target Ther 5:174. https://doi.org/10.1038/s41392-020-00281-w

    Article  PubMed  PubMed Central  Google Scholar 

  49. Perdigão GMC, Lopes MS, Marques LB, Prazeres P, Gomes KS, de Oliveira RB, Pinto MCX, de Souza-Fagundes EM (2018) Novel nitroaromatic compound activates autophagy and apoptosis pathways in HL60 cells. Chem Biol Interact 283:107–115. https://doi.org/10.1016/j.cbi.2017.12.012

    Article  CAS  PubMed  Google Scholar 

  50. Bai LY, Chiu CF, Chiu SJ, Chu PC, Weng JR (2017) FTY720 induces autophagy-associated apoptosis in human oral squamous carcinoma cells, in part, through a reactive oxygen species/Mcl-1-dependent mechanism. Sci Rep 7:5600. https://doi.org/10.1038/s41598-017-06047-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Eisenberg-Lerner A, Bialik S, Simon HU, Kimchi A (2009) Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ 16:966–975. https://doi.org/10.1038/cdd.2009.33

    Article  CAS  PubMed  Google Scholar 

  52. Drexler HG, Quentmeier H, MacLeod RA, Uphoff CC, Hu ZB (1995) Leukemia cell lines: in vitro models for the study of acute promyelocytic leukemia. Leuk Res 19(10):681–691. https://doi.org/10.1016/0145-2126(95)00036-n

    Article  CAS  PubMed  Google Scholar 

  53. Duprez E, Ruchaud S, Houge G, Martin-Thouvenin V, Valensi F, Kastner P, Berger R, Lanotte M (1992) A retinoid acid “resistant” t(15;17) acute promyelocytic leukemia cell line: isolation, morphological, immunological, and molecular features. Leukemia 6(12):1281–1287

    CAS  PubMed  Google Scholar 

  54. Drullion C, Trégoat C, Lagarde V, Tan S, Gioia R, Priault M, Djavaheri-Mergny M, Brisson A, Auberger P, Mahon FX, Pasquet JM (2012) Apoptosis and autophagy have opposite roles on imatinib-induced K562 leukemia cell senescence. Cell Death Dis 3(8):e373. https://doi.org/10.1038/cddis.2012.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Fund (Grant Number: 81872763).

Funding

National Natural Science Foundation of China, 81872763, Fujiang Guo

Author information

Authors and Affiliations

Authors

Contributions

WZ: Conceptualization, data curation, formal analysis, Validation, methodology, writing-original draft. JL: Methodology, investigation. YL: Conceptualization, resources, supervision, funding acquisition. FG: Conceptualization, resources, supervision, funding acquisition, project administration, writing-review & editing.

Corresponding authors

Correspondence to Yiming Li or Fujiang Guo.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest in this work.

Ethical approval

All animal experiments were approved by the animal ethical committee of Shanghai University of Traditional Chinese Medicine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 6993 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Liu, J., Li, Y. et al. A bavachinin analog, D36, induces cell death by targeting both autophagy and apoptosis pathway in acute myeloid leukemia cells. Cancer Chemother Pharmacol 90, 251–265 (2022). https://doi.org/10.1007/s00280-022-04462-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-022-04462-y

Keywords

Navigation