Skip to main content

Advertisement

Log in

Anti-drug antibodies in the current management of cancer

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Monoclonal antibodies (mAbs) have become one of the main therapeutic weapons in modern oncology, mainly as targeted therapies, and immune checkpoint inhibitors. The generation of anti-drug antibodies (ADAs) after their administration can alter their pharmacokinetic, pharmacodynamic, efficacy and safety profile causing infusion-related reactions. Several risk factors have been associated with ADAs development, notably host genetics and immune status, comorbidity, concomitant medications, mAbs molecular structure, dose and route of administration. ADAs are not usually tested on daily clinical practice, being their analysis generally placed in early stages of drug development. ELISA-type assay the most common method. ADAs detection can involve important implications for treatment strategies of cancer patients, guiding therapeutic adjustment. In oncology, some studies about ADAs synthesis related to targeted therapies and immune checkpoint inhibitors have been recently published. Several strategies are proposed to reduce mAbs immunogenicity, such as different schedules, routes of administration or even the use of immunosuppressants. Another question that arises in relation to ADAs generation is the need to measure the concentration levels of active drug to guide the administration schedule. In this review, we will discuss all the aspects that are currently under discussion in relation with ADAs in oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chan JCN, Chan ATC (2017) Biologics and biosimilars: what, why and how? ESMO Open. 2(1):e000180. https://doi.org/10.1136/esmoopen-2017-000180 (Published 2017 Mar 24)

    Article  PubMed Central  Google Scholar 

  2. Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJ (2010) The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov 9(4):325–338. https://doi.org/10.1038/nrd3003

    Article  CAS  PubMed  Google Scholar 

  3. van Brummelen EM, Ros W, Wolbink G, Beijnen JH, Schellens JH (2016) Antidrug antibody formation in oncology: clinical relevance and challenges. Oncologist 21(10):1260–1268. https://doi.org/10.1634/theoncologist.2016-0061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baldo BA (2013) Adverse events to monoclonal antibodies used for cancer therapy: focus on hypersensitivity responses. Oncoimmunology 2(10):e26333. https://doi.org/10.4161/onci.26333

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vaisman-Mentesh A, Rosenstein S, Yavzori M et al (2019) Molecular landscape of anti-drug antibodies reveals the mechanism of the immune response following treatment with TNFα antagonists. Front Immunol 10:2921. https://doi.org/10.3389/fimmu.2019.02921 (Published 2019 Dec 18)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jawa V, Terry F, Gokemeijer J et al (2020) T-cell dependent immunogenicity of protein therapeutics pre-clinical assessment and mitigation-updated consensus and review 2020. Front Immunol 11:1301. https://doi.org/10.3389/fimmu.2020.01301 (Published 2020 Jun 30)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Doevendans E, Schellekens H (2019) Immunogenicity of innovative and biosimilar monoclonal antibodies. Antibodies (Basel) 8(1):21. https://doi.org/10.3390/antib8010021 (Published 2019 Mar 5)

    Article  CAS  Google Scholar 

  8. Benucci M, Damiani A, Li Gobbi F et al (2018) Correlation between HLA haplotypes and the development of antidrug antibodies in a cohort of patients with rheumatic diseases. Biologics 12:37–41. https://doi.org/10.2147/BTT.S145941 (Published 2018 Jan 31)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Blair HA, Duggan ST (2018) Belimumab: a review in systemic lupus erythematosus. Drugs 78:355–366. https://doi.org/10.1007/s40265-018-0872-z

    Article  CAS  PubMed  Google Scholar 

  10. Dunn N, Juto A, Ryner M et al (2018) Rituximab in multiple sclerosis: frequency and clinical relevance of anti-drug antibodies. Mult Scler 24(9):1224–1233. https://doi.org/10.1177/1352458517720044

    Article  CAS  PubMed  Google Scholar 

  11. Wilson A, Peel C, Wang Q, Pananos AD, Kim RB (2020) HLADQA1∗ 05 genotype predicts anti-drug antibody formation and loss of response during infliximab therapy for inflammatory bowel disease. Aliment Pharmacol Ther 51:356–363. https://doi.org/10.1111/apt.15563

    Article  CAS  PubMed  Google Scholar 

  12. Tovey MG, Lallemand C (2011) Immunogenicity and other problems associated with the use of biopharmaceuticals. Ther Adv Drug Saf 2(3):113–128. https://doi.org/10.1177/2du042098611406318

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fehr T, Bachmann MF, Bucher E et al (1997) Role of repetitive antigen patterns for induction of antibodies against antibodies. J Exp Med 185(10):1785–1792. https://doi.org/10.1084/jem.185.10.1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Collet-Brose J, Couble PJ, Deehan MR, Nelson RJ, Ferlin WG, Lory S (2016) Evaluation of multiple immunoassay technology platforms to select the anti-drug antibody assay exhibiting the most appropriate drug and target tolerance. J Immunol Res 2016:5069678. https://doi.org/10.1155/2016/5069678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Krieckaert C, Rispens T, Wolbink G (2012) Immunogenicity of biological therapeutics: from assay to patient. Curr Opin Rheumatol 24(3):306–311. https://doi.org/10.1097/BOR.0b013e3283521c4e

    Article  PubMed  Google Scholar 

  16. Hart MH, de Vrieze H, Wouters D et al (2011) Differential effect of drug interference in immunogenicity assays. J Immunol Methods 372(1–2):196–203. https://doi.org/10.1016/j.jim.2011.07.019

    Article  CAS  PubMed  Google Scholar 

  17. Fleri W, Paul S, Dhanda SK et al (2017) The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design. Front Immunol 8:278. https://doi.org/10.3389/fimmu.2017.00278 (Published 2017 Mar 14)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schlessinger A, Ofran Y, Yachdav G, Rost B (2006) Epitome: database of structure-inferred antigenic epitopes. Nucleic Acids Res 34(Database issue):D777–D780. https://doi.org/10.1093/nar/gkj053

    Article  CAS  PubMed  Google Scholar 

  19. Sailstad JM, Amaravadi L, Clements-Egan A et al (2014) A white paper–consensus and recommendations of a global harmonization team on assessing the impact of immunogenicity on pharmacokinetic measurements. AAPS J 16(3):488–498. https://doi.org/10.1208/s12248-014-9582-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wadhwa M, Bird C, Dilger P, Gaines-Das R, Thorpe R (2003) Strategies for detection, measurement and characterization of unwanted antibodies induced by therapeutic biologicals. J Immunol Methods 278(1–2):1–17. https://doi.org/10.1016/s0022-1759(03)00206-0

    Article  CAS  PubMed  Google Scholar 

  21. Swanson SJ (2003) New technologies for the detection of antibodies to therapeutic proteins. Dev Biol (Basel) 112:127–133

    CAS  Google Scholar 

  22. Gupta S, Indelicato SR, Jethwa V et al (2007) Recommendations for the design, optimization, and qualification of cell-based assays used for the detection of neutralizing antibody responses elicited to biological therapeutics. J Immunol Methods 321(1–2):1–18. https://doi.org/10.1016/j.jim.2006.12.004.+

    Article  CAS  PubMed  Google Scholar 

  23. U.S. Food and Drug Administration (2010) Guidance for industry: Adaptive design clinical trials for drugs and biologics

  24. European Medicines Agency (2007) Guideline on immunogenicity assessment of biotechnology-derived therapeutic proteins

  25. Ridker PM, Tardif J-C, Amarenco P et al (2017) Lipid-reduction variability and antidrug-antibody formation with bococizumab. N Engl J Med 376:1517–1526

    Article  CAS  Google Scholar 

  26. Baker MP, Reynolds HM, Lumicisi B, Bryson CJ (2010) Immunogenicity of protein therapeutics: the key causes, consequences and challenges. Self Nonself 1(4):314–322. https://doi.org/10.4161/self.1.4.13904

    Article  PubMed  PubMed Central  Google Scholar 

  27. Thway TM, Magana I, Bautista A, Jawa V, Gu W, Ma M (2013) Impact of anti-drug antibodies in preclinical pharmacokinetic assessment. AAPS J 15(3):856–863. https://doi.org/10.1208/s12248-013-9484-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dostalek M, Gardner I, Gurbaxani BM, Rose RH, Chetty M (2013) Pharmacokinetics, pharmacodynamics and physiologically-based pharmacokinetic modelling of monoclonal antibodies. Clin Pharmacokinet 52(2):83–124. https://doi.org/10.1007/s40262-012-0027-4

    Article  CAS  PubMed  Google Scholar 

  29. Bennett CL, Luminari S, Nissenson AR et al (2004) Pure red-cell aplasia and epoetin therapy. N Engl J Med 351(14):1403–1408. https://doi.org/10.1056/NEJMoa040528

    Article  CAS  PubMed  Google Scholar 

  30. Pascual-Salcedo D, Plasencia C, Ramiro S et al (2011) Influence of immunogenicity on the efficacy of long-term treatment with infliximab in rheumatoid arthritis. Rheumatology (Oxford) 50(8):1445–1452. https://doi.org/10.1093/rheumatology/ker124

    Article  CAS  Google Scholar 

  31. Ducourau E, Mulleman D, Paintaud G et al (2011) Antibodies toward infliximab are associated with low infliximab concentration at treatment initiation and poor infliximab maintenance in rheumatic diseases. Arthritis Res Ther 13(3):R105. https://doi.org/10.1186/ar3386 (Published 2011 Jun 27)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Krieckaert CL, Bartelds GM, Lems WF, Wolbink GJ (2010) The effect of immunomodulators on the immunogenicity of TNF-blocking therapeutic monoclonal antibodies: a review. Arthritis Res Ther 12(5):217. https://doi.org/10.1186/ar3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Colombel JF, Sandborn WJ, Reinisch W et al (2010) Infliximab, azathioprine, or combination therapy for Crohn’s disease. N Engl J Med 362(15):1383–1395. https://doi.org/10.1056/NEJMoa0904492

    Article  CAS  PubMed  Google Scholar 

  34. Heiberg MS, Rødevand E, Mikkelsen K et al (2006) Adalimumab and methotrexate is more effective than adalimumab alone in patients with established rheumatoid arthritis: results from a 6-month longitudinal, observational, multicentre study. Ann Rheum Dis 65(10):1379–1383. https://doi.org/10.1136/ard.2006.051540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bartelds GM, Krieckaert CL, Nurmohamed MT et al (2011) Development of antidrug antibodies against adalimumab and association with disease activity and treatment failure during long-term follow-up. JAMA 305(14):1460–1468. https://doi.org/10.1001/jama.2011.406

    Article  CAS  PubMed  Google Scholar 

  36. Saffari F, Jafarzadeh A, Kalantari Khandani B, Soleimanyamoli S et al (2018) Immunogenicity of rituximab, trastuzumab, and bevacizumab monoclonal antibodies in patients with malignant diseases. Int J Cancer Manag 11(11):e64983. https://doi.org/10.5812/ijcm.64983

    Article  Google Scholar 

  37. Kverneland AH, Enevold C, Donia M, Bastholt L, Svane IM, Nielsen CH (2018) Development of anti-drug antibodies is associated with shortened survival in patients with metastatic melanoma treated with ipilimumab. Oncoimmunology 7(5):e1424674. https://doi.org/10.1080/2162402X.2018.1424674 (Published 2018 Feb 1)

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hellmann MD, Bivi N, Calderon B et al (2021) Safety and immunogenicity of LY3415244, a bispecific antibody against TIM-3 and PD-L1, in patients with advanced solid tumors. Clin Cancer Res 27(10):2773–2781. https://doi.org/10.1158/1078-0432.CCR-20-3716

    Article  CAS  PubMed  Google Scholar 

  39. de Spéville BD, Moreno V (2021) Antidrug Antibodies and Drug Development: Challenges in the Immunotherapy Era. Clin Cancer Res 27(10):2669–2671. https://doi.org/10.1158/1078-0432.CCR-21-0168

    Article  PubMed  Google Scholar 

  40. van Vugt MJH, Stone JA, De Greef RHJMM et al (2019) Immunogenicity of pembrolizumab in patients with advanced tumors. J Immunother Cancer 7(1):212. https://doi.org/10.1186/s40425-019-0663-4 (Published 2019 Aug 8)

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vaisman-Mentesh A, Gutierrez-Gonzalez M, DeKosky BJ, Wine Y (2020) The molecular mechanisms that underlie the immune biology of anti-drug antibody formation following treatment with monoclonal antibodies. Front Immunol 11:1951. https://doi.org/10.3389/fimmu.2020.01951 (Published 2020 Aug 18)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Enrico D, Paci A, Chaput N, Karamouza E, Besse B (2020) Antidrug antibodies against immune checkpoint blockers: impairment of drug efficacy or indication of immune activation? Clin Cancer Res 26(4):787–792. https://doi.org/10.1158/1078-0432.CCR-19-2337

    Article  CAS  PubMed  Google Scholar 

  43. Davda J, Declerck P, Hu-Lieskovan S et al (2019) Immunogenicity of immunomodulatory, antibody-based, oncology therapeutics. J Immunother Cancer 7:105. https://doi.org/10.1186/s40425-019-0586-0

    Article  PubMed  PubMed Central  Google Scholar 

  44. Spigel DR, Chaft JE, Gettinger S et al (2018) FIR: efficacy, safety, and biomarker analysis of a phase II open-label study of atezolizumab in PD-L1-selected patients with NSCLC. J Thorac Oncol 13(11):1733–1742. https://doi.org/10.1016/j.jtho.2018.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rittmeyer A, Barlesi F, Waterkamp D et al (2017) Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial [published correction appears in Lancet. 2017 Apr 8;389(10077):e5]. Lancet 389(10066):255–265. https://doi.org/10.1016/S0140-6736(16)32517-X

    Article  PubMed  Google Scholar 

  46. Fehrenbacher L, Spira A, Ballinger M et al (2016) Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 387(10030):1837–1846. https://doi.org/10.1016/S0140-6736(16)00587-0

    Article  CAS  PubMed  Google Scholar 

  47. Socinski MA, Jotte RM, Cappuzzo F et al (2018) Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med 378(24):2288–2301. https://doi.org/10.1056/NEJMoa1716948

    Article  CAS  PubMed  Google Scholar 

  48. van Vugt M, de Greef R, Freshwater T, Mangin E, van Aarle F, Kondic A (2016) Immunogenicity of pembrolizumab (pembro) in patients (pts) with advanced melanoma (MEL) and non-small cell lung cancer (NSCLC): pooled results from KEYNOTE-001, 002, 006, and 010. J Clin Oncol 34(15_suppl):3063

    Article  Google Scholar 

  49. Agrawal S, Statkevich P, Bajaj G, Feng Y, Saeger S, Desai DD et al (2017) Evaluation of immunogenicity of nivolumab monotherapy and its clinical relevance in patients with metastatic solid tumors. J Clin Pharmacol 57:394–400

    Article  CAS  Google Scholar 

  50. Jones TD, Crompton LJ, Carr FJ, Baker MP (2009) Deimmunization of monoclonal antibodies. Methods Mol Biol 525:405–xiv. https://doi.org/10.1007/978-1-59745-554-1_21

    Article  CAS  PubMed  Google Scholar 

  51. Bannas P, Hambach J, Koch-Nolte F (2017) nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics. Front Immunol 8:1603. https://doi.org/10.3389/fimmu.2017.01603 (Published 2017 Nov 22)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. European Medicines Agency, Committee for Medicinal Products for Human Use (CHMP). Assessment report for Tecentriq (atezolizumab). https://www.ema.europa.eu/en/documents/assessment-report/tecentriq-eparpublic-assessment-report_en.pdf

  53. Farrell RJ, Alsahli M, Jeen YT, Falchuk KR, Peppercorn MA, Michetti P (2003) Intravenous hydrocortisone premedication reduces antibodies to infliximab in Crohn’s disease: a randomized controlled trial. Gastroenterology 124(4):917–924. https://doi.org/10.1053/gast.2003.50145

    Article  CAS  PubMed  Google Scholar 

  54. Arbour KC, Mezquita L, Long N et al (2018) Impact of baseline steroids on efficacy of programmed cell death-1 and programmed death-ligand 1 blockade in patients with non-small-cell lung cancer. J Clin Oncol 36(28):2872–2878. https://doi.org/10.1200/JCO.2018.79.0006

    Article  CAS  PubMed  Google Scholar 

  55. Tolcher AW, Sznol M, Hu-Lieskovan S et al (2017) Phase Ib study of utomilumab (PF-05082566), a 4–1BB/CD137 agonist, in combination with pembrolizumab (MK-3475) in patients with advanced solid tumors. Clin Cancer Res 23(18):5349–5357. https://doi.org/10.1158/1078-0432.CCR-17-1243

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors or this manuscript acknowledge to Dr. José Ignacio Chacón, Medical Oncologist of Medical Oncology Department in Hospital Virgen de la Salud, his contribution on the education of new oncologist residents. He has always been open to help and guide clinical and researching projects. We also would like to acknowledge to Dr. Elia Martínez. She is the light leading this review and many other researching activities and on-going projects.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Moreno.

Ethics declarations

Conflict of interest

The authors of this article declare that there is no conflict of interest with respect to its publication. All the authors have participated in the concept and writing and have read and approved the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borregón, M., Martínez, K., Ramos, A. et al. Anti-drug antibodies in the current management of cancer. Cancer Chemother Pharmacol 89, 577–584 (2022). https://doi.org/10.1007/s00280-022-04418-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-022-04418-2

Keywords

Navigation