Skip to main content

Advertisement

Log in

VEGF, ANGPT1, ANGPT2, and MMP-9 expression in the autologous hematopoietic stem cell transplantation and its impact on the time to engraftment

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

As a site of complicated interactions among cytokines, bone marrow niche has been the subject of many scientific studies, mainly in the context of the proteins influencing damage or recovery of endothelium after allogeneic hematopoietic stem cell transplantation (HSCT). In this study, we aimed at exploring mutual correlations of bone marrow niche cytokines involved in the homing and mobilization of hematopoietic stem cells, as well as in angiogenesis. The aim of our study was to evaluate levels of cytokines: VEGF, angiopoietin-1 (ANGPT1), angiopoietin-2 (ANGPT2), and matrix metalloproteinase 9 (MMP-9) during autologous HSCT and to examine their influence on hematological recovery. Forty-three patients with hematological malignancies (33 multiple myeloma, 10 lymphoma) were enrolled in the study. Plasma samples were taken at five time points: before conditioning treatment (BC), on transplantation day (0) and 7 (+7), 14 (+14), and 21 (+21) days after HSCT. The cytokine levels were evaluated by ELISA method. Our study revealed decreased levels of VEGF, ANGPT1, and MMP-9 in the early post-transplant period as compared to the baseline (BC). ANGPT2 was decreased after conditioning treatment, but tended to increase from day +7. On day +7, positive correlations between ANGPT1 level as well as MMP-9 and the time to engraftment were observed. As opposite to ANGPT1, negative correlation between ANGPT2 level on day +7 after HSCT and the time to hematological recovery was noticed. Our study suggests that investigated cytokines are an important part of bone marrow environment and significantly influence the time to engraftment after HSCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kopp HG, Avecilla ST, Hooper AT, Rafii S (2005) The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethsda) 20(5):349–356. https://doi.org/10.1152/physiol.00025.2005

    Article  CAS  Google Scholar 

  2. Takahashi T, Kalka C, Masuda H et al (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5(4):434–438. https://doi.org/10.1038/7434

    Article  CAS  PubMed  Google Scholar 

  3. Taichman RS (2005) Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 105:2631–2639. https://doi.org/10.1182/blood-2004-06-2480

    Article  CAS  PubMed  Google Scholar 

  4. Asada N, Katayama Y (2012) Regulation of hematopoiesis in endosteal microenvironments. Int J Hematol 99(6):679–684. https://doi.org/10.1007/s12185-014-1583-1

    Article  Google Scholar 

  5. Biel NM, Siemann DW (2016) Targeting the angiopoietin-2/Tie-2 axis in conjunction with VEGF signal interference. Cancer Lett 380(2):525–533. https://doi.org/10.1016/j.canlet.2014.09.035

    Article  CAS  PubMed  Google Scholar 

  6. Testa U, Saulle E, Castelli G, Pelosi E (2016) Endothelial progenitor cells in hematologic malignancies. Stem Cell Investig 3:26. 10.21037/sci.2016.06.07

    Article  PubMed  PubMed Central  Google Scholar 

  7. Szmigielska-Kaplon A, Krawczynska A, Czemerska M et al (2013) The kinetics and apoptotic profile of circulating endothelial cells in autologous hematopoietic stem cell transplantation in patients with lymphoproliferative disorders. Ann Hematol 92(9):1255–1262. https://doi.org/10.1007/s00277-013-1759-4

    Article  CAS  PubMed  Google Scholar 

  8. Yang J, Wenlu L, He X, Zhang G, Yue L, Chai Y (2015) VEGF overexpression is a valuable prognostic factor for non-Hodgkin’s lymphoma evidence from a systemic meta-analysis. Dis Markers 2015:786790. https://doi.org/10.1155/2015/786790

    PubMed  PubMed Central  Google Scholar 

  9. Sezer O, Niemoller K, Eucker J et al (2000) Bone marrow microvessel density is a prognostic factor for survival in patients with multiple myeloma. Ann Hematol 79(10):574–577. https://doi.org/10.1007/s002770000236

    Article  CAS  PubMed  Google Scholar 

  10. Falcon BL, Chintharlapalli S, Uhlik MT, Pytowski B (2016) Antagonist antibodies to vascular endothelial growth factor receptor 2 (VEGFR-2) as anti-angiogenic agents. Pharmacol Ther 164:204–225. https://doi.org/10.1016/j.pharmthera.2016.06.001

    Article  CAS  PubMed  Google Scholar 

  11. Jiang L, Sun JH, Quan LN et al (2016) Abnormal vascular endothelial growth factor protein expression may be correlated with poor prognosis in diffuse large B-cell lymphoma: a meta-analysis. J Cancer Res Ther 12(2):605–611. https://doi.org/10.4103/0973-1482.146086

    Article  CAS  PubMed  Google Scholar 

  12. Zub KA, Sousa MM, Sarno A et al (2015) Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells. PLoS One 10(3):e0119857. https://doi.org/10.1371/journal.pone.0119857

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359(6398):843–845. https://doi.org/10.1038/359843a0

    Article  CAS  PubMed  Google Scholar 

  14. Li YL, Zhao H, Ren XB (2016) Relationship of VEGF/VEGFR with immune and cancer cells: staggering or forward. Cancer Biol Med 13(2):206–214. 10.20892/j.issn.2095-3941.2015.0070

    Article  PubMed  PubMed Central  Google Scholar 

  15. Koch S, Claesson-Welsh L (2012) Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med 2(7):a006502. https://doi.org/10.1101/cshperspect.a006502

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mazzieri R, Pucci F, Moi D et al (2011) Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 19(4):512–526. https://doi.org/10.1016/j.ccr.2011.02.005

    Article  CAS  PubMed  Google Scholar 

  17. Porkholm M, Bono P, Saarinen-Pihkala UM, Kivivuori SM (2013) Higher angiopoietin-2 and VEGF levels predict shorter EFS and increased non-relapse mortality after pediatric hematopoietic SCT. Bone Marrow Transplant 48(1):50–55. https://doi.org/10.1038/bmt.2012.101

    Article  CAS  PubMed  Google Scholar 

  18. Arai F, Hirao A, Ohmura M et al (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118:149–161. https://doi.org/10.1016/j.cell.2004.07.004

    Article  CAS  PubMed  Google Scholar 

  19. Sun L, Zhang H, Bi L et al (2016) Angiopoietin-1 facilitates recovery of hematopoiesis in radiated mice. Am J Transl Res 8(5):2011–2021

    PubMed  PubMed Central  Google Scholar 

  20. Zhou BO, Ding L, Morrison SJ (2015) Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting Angiopoietin-1. elife 4:e05521. https://doi.org/10.7554/eLife.05521

    PubMed  PubMed Central  Google Scholar 

  21. Saharinen P, Alitalo K (2011) The yin, the yang, and the angiopoietin-1. J Clin Invest 121(6):2157–2159. https://doi.org/10.1172/JCI58196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Takakura N, Watanabe T, Suenobu S et al (2000) A role for hematopoietic stem cells in promoting angiogenesis. Cell 102(2):199–209. https://doi.org/10.1016/S0092-8674(00)00025-8

    Article  CAS  PubMed  Google Scholar 

  23. Saulle E, Guerriero R, Petronelli A et al (2012) Autocrine role of angiopoietins during megakaryocytic differentiation. PLoS One 7(7):e39796. https://doi.org/10.1371/journal.pone.0039796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu XB, Chen H, Chen HQ et al (2012) Angiopoietin-1 preconditioning enhances survival and functional recovery of mesenchymal stem cell transplantation. J Zhejiang Univ Sci B 13(8):616–623. https://doi.org/10.1631/jzus.B1201004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hughes DP, Marron MB, Brindle NP (2003) The antiinflammatory endothelial tyrosine kinase Tie2 interacts with a novel nuclear factor-kappaB inhibitor ABIN-2. Circ Res 92(6):6–6. https://doi.org/10.1161/01.RES.0000063422.38690.DC

    Article  Google Scholar 

  26. Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology 7(4):452–464. https://doi.org/10.1215/S1152851705000232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ueda N, Chihara D, Kohno A (2014) Predictive value of circulating angiopoietin-2 for endothelial damage-related complications in allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 20(9):1335–1340. https://doi.org/10.1016/j.bbmt.2014.04.030

    Article  CAS  PubMed  Google Scholar 

  28. Du R, Lu KV, Petritsch C et al (2008) HIF1α induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13(3):206–220. https://doi.org/10.1016/j.ccr.2008.01.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lobov IB, Brooks PC, Lang RA (2002) Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proc Natl Acad Sci U S A 99(17):11205–11210. https://doi.org/10.1073/pnas.172161899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Welford AF, Biziato D, Coffelt SB et al (2011) TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice. J Clin Invest 121(5):1969–1973. https://doi.org/10.1172/JCI44562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vande Broek I, Asosingh K, Allegaert V et al (2004) Bone marrow endothelial cells increase the invasiveness of human multiple myeloma cells through upregulation of MMP-9: evidence for a role of hepatocyte growth factor. Leukemia 18(5):976–982. https://doi.org/10.1038/sj.leu.2403331

    Article  CAS  PubMed  Google Scholar 

  32. Deryugina EI, Quigley JP (2015) Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature. Matrix Biol 44-46:94–112. https://doi.org/10.1016/j.matbio.2015.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Weis SM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17(11):1359–1370. https://doi.org/10.1038/nm.2537

    Article  CAS  PubMed  Google Scholar 

  34. Heissig B, Hattori K, Dias S et al (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109(5):625–637. https://doi.org/10.1016/S0092-8674(02)00754-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Butcher EC, Picker LJ (1996) Lymphocyte homing and homeostasis. Science 272(5258):60–66. https://doi.org/10.1126/science.272.5258.60

    Article  CAS  PubMed  Google Scholar 

  36. Lévesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ (2001) Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 98(5):1289–1297. https://doi.org/10.1182/blood.V98.5.1289

    Article  PubMed  Google Scholar 

  37. Koehne P, Willam C, Strauss E, Schindler R, Eckardt KU, Bührer C (2000) Lack of hypoxic stimulation of VEGF secretion from neutrophils and platelets. Am J Physiol Heart Circ Physiol 279(2):H817–H824

    CAS  PubMed  Google Scholar 

  38. Rellick SL, O'Leary H, Piktel D et al (2012) Bone marrow osteoblast damage by chemotherapeutic agents. PLoS One 7(2):e30758. https://doi.org/10.1371/journal.pone.0030758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gencheva M, Hare I, Kurian S et al (2013) Bone marrow osteoblast vulnerability to chemotherapy. Eur J Haematol 90(6):469–478. https://doi.org/10.1111/ejh.12109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Min CK, Kim SY, Lee MJ et al (2006) Vascular endothelial growth factor (VEGF) is associated with reduced severity of acute graft-versus-host disease and nonrelapse mortality after allogeneic stem cell transplantation. Bone Marrow Transplant 38(2):149–156. https://doi.org/10.1038/sj.bmt.1705410

    Article  CAS  PubMed  Google Scholar 

  41. Hattori K, Dias S, Heissig B et al (2001) Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 193(9):1005–1014. https://doi.org/10.1084/jem.193.9.1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hansen TM, Singh H, Tahir TA, Brindle NP (2010) Effects of angiopoietins-1 and -2 on the receptor tyrosine kinase Tie2 are differentially regulated at the endothelial cell surface. Cell Signal 22(3):527–532. https://doi.org/10.1016/j.cellsig.2009.11.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Scharpfenecker M, Fiedler U, Reiss Y, Augustin HG (2005) The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J Cell Sci 118(Pt 4):771–780. https://doi.org/10.1242/jcs.01653

    Article  CAS  PubMed  Google Scholar 

  44. Sinnathamby T, Yun J, Clavet-Lanthier MÉ et al (2015) VEGF and angiopoietins promote inflammatory cell recruitment and mature blood vessel formation in murine sponge/Matrigel model. J Cell Biochem 116(1):45–57. https://doi.org/10.1002/jcb.24941

    Article  CAS  PubMed  Google Scholar 

  45. Holash J, Maisonpierre PC, Compton D et al (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284(5422):1994–1998. https://doi.org/10.1126/science.284.5422.1994

    Article  CAS  PubMed  Google Scholar 

  46. Hayes AJ, Huang WQ, Yu J, Maisonpierre PC et al (2000) Expression and function of angiopoietin-1 in breast cancer. Br J Cancer 83(9):1154–1160. https://doi.org/10.1054/bjoc.2000.1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stoeltzing O, Ahmad SA, Liu W et al (2003) Angiopoietin-1 inhibits vascular permeability, angiogenesis, and growth of hepatic colon cancer tumors. Cancer Res 63(12):3370–3377

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors declare no conflict of interests that that would be relevant to the content of this article. Preliminary results of the study were presented at 41st Annual Meeting of EBMT Congress in March 2015 and on XVI Congress of Polish Society of Hematology and Transfusion Medicine in September 2015. The authors have no conflicts of interest that would be directly relevant to the content of this paper.

Funding

This work was supported by the grants from the Medical University of Lodz No: 503/1-093-01/503-11-003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateusz Nowicki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nowicki, M., Wierzbowska, A., Małachowski, R. et al. VEGF, ANGPT1, ANGPT2, and MMP-9 expression in the autologous hematopoietic stem cell transplantation and its impact on the time to engraftment. Ann Hematol 96, 2103–2112 (2017). https://doi.org/10.1007/s00277-017-3133-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-017-3133-4

Keywords

Navigation