Skip to main content

Advertisement

Log in

Deguelin, a selective silencer of the NPM1 mutant, potentiates apoptosis and induces differentiation in AML cells carrying the NPM1 mutation

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Nucleophosmin (NPM1) is a multifunctional protein that functions as a molecular chaperone, shuttling between the nucleolus and the cytoplasm. In up to one third of patients with acute myeloid leukemia, mutation of NPM1 results in the aberrant cytoplasmic accumulation of mutant protein and is thought to be responsible for leukemogenesis. Deguelin, a rotenoid isolated from several plant species, has been shown to be a strong anti-tumor agent. Human leukemia cell lines were used for in vitro studies. Drug efficacy was evaluated by apoptosis and differentiation assays, and associated molecular events were assessed by Western blot. Gene silencing was performed using small interfering RNA (siRNA). Deguelin exhibited strong cytotoxic activity in the cell line of OCI-AML3 and selectively down-regulated the NPM1 mutant protein, which was accompanied by up-regulation of the activity of caspase-6 and caspase-8 in high concentrations. Deguelin induced differentiation of OCI-AML3 cells at a nontoxic concentration which was associated with a decrease in expression of activated caspase-8, p53, p21, and the 30-kD form of CCAAT/enhancer binding protein α (C/EBPα), whereas no effects were found in OCIM2 cells expressing NPM-wt. Moreover, treatment with siRNA in the NPM mutant cell line OCI-AML3 decreased expression of p53, p21, pro-caspase-8, and the 30-kD form of C/EBPα, and it inhibited proliferation and induced differentiation of the OCI-AML3 cells. In conclusion, deguelin is a potent in vitro inhibitor of the mutant form of NPM1, which provides the molecular basis for its anti-leukemia activities in NPM1 mutant acute myeloid leukemia cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Okuwaki M (2008) The structure and functions of NPM1/Nucleophsmin/B23, a multifunctional nucleolar acidic protein. J Biochem 143(4):441–448, eng

    Article  CAS  PubMed  Google Scholar 

  2. Grisendi S, Mecucci C, Falini B, Pandolfi PP (2006) Nucleophosmin and cancer. Nat Rev Cancer 6(7):493–505, eng

    Article  CAS  PubMed  Google Scholar 

  3. Okuda M (2002) The role of nucleophosmin in centrosome duplication. Oncogene 21(40):6170–6174, eng

    Article  CAS  PubMed  Google Scholar 

  4. Murano K, Okuwaki M, Hisaoka M, Nagata K (2008) Transcription regulation of the rRNA gene by a multifunctional nucleolar protein, B23/nucleophosmin, through its histone chaperone activity. Mol Cell Biol 28(10):3114–3126, eng

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Colombo E, Marine JC, Danovi D, Falini B, Pelicci PG (2002) Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol 4(7):529–533, Eng

    Article  CAS  PubMed  Google Scholar 

  6. Kuo ML, den Besten W, Bertwistle D, Roussel MF, Sherr CJ (2004) N-terminal polyubiquitination and degradation of the Arf tumor suppressor. Genes Dev 18(15):1862–1874, eng

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L et al (2005) Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 352(3):254–266, eng

    Article  CAS  PubMed  Google Scholar 

  8. Falini B, Nicoletti I, Martelli MF, Mecucci C (2007) Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features. Blood 109(3):874–885, eng

    Article  CAS  PubMed  Google Scholar 

  9. Cheng K, Sportoletti P, Ito K, Clohessy JG, Teruya-Feldstein J, Kutok JL et al (2010) The cytoplasmic NPM mutant induces myeloproliferation in a transgenic mouse model. Blood 115(16):3341–3345, eng

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Bolli N, Payne EM, Grabher C, Lee JS, Johnston AB, Falini B et al (2010) Expression of the cytoplasmic NPM1 mutant (NPMc+) causes the expansion of hematopoietic cells in zebrafish. Blood 115(16):3329–3340, eng

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Falini B, Martelli MP, Bolli N, Sportoletti P, Liso A, Tiacci E et al (2011) Acute myeloid leukemia with mutated nucleophosmin (NPM1): is it a distinct entity? Blood 117(4):1109–1120, eng

    Article  CAS  PubMed  Google Scholar 

  12. Ji BC, Yu CC, Yang ST, Hsia TC, Yang JS, Lai KC et al (2012) Induction of DNA damage by deguelin is mediated through reducing DNA repair genes in human non-small cell lung cancer NCI-H460 cells. Oncol Rep 27(4):959–964, eng

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Thamilselvan V, Menon M, Thamilselvan S (2011) Anticancer efficacy of deguelin in human prostate cancer cells targeting glycogen synthase kinase-3 beta/beta-catenin pathway. Int J Cancer 129(12):2916–2927, eng

    Article  CAS  PubMed  Google Scholar 

  14. Lee H, Lee JH, Jung KH, Hong SS (2010) Deguelin promotes apoptosis and inhibits angiogenesis of gastric cancer. Oncol Rep 24(4):957–963, eng

    CAS  PubMed  Google Scholar 

  15. Murillo G, Peng X, Torres KE, Mehta RG (2009) Deguelin inhibits growth of breast cancer cells by modulating the expression of key members of the Wnt signaling pathway. Cancer Prev Res (Phila) 2(11):942–950, eng

    Article  CAS  Google Scholar 

  16. Udeani GO, Gerhauser C, Thomas CF, Moon RC, Kosmeder JW, Kinghorn AD et al (1997) Cancer chemopreventive activity mediated by deguelin, a naturally occurring rotenoid. Cancer Res 57(16):3424–3428, eng

    CAS  PubMed  Google Scholar 

  17. Murillo G, Kosmeder JW II, Pezzuto JM, Mehta RG (2003) Deguelin suppresses the formation of carcinogen-induced aberrant crypt foci in the colon of CF-1 mice. Int J Cancer 104(1):7–11, eng

    Article  CAS  PubMed  Google Scholar 

  18. Paulus P, Ockelmann P, Tacke S, Karnowski N, Ellinghaus P, Scheller B et al (2012) Deguelin attenuates reperfusion injury and improves outcome after orthotopic lung transplantation in the rat. PLoS One 7(6):e39265, eng

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Liu HL, Chen Y, Cui GH, Wu QL, He J, Chen WH et al (2005) Deguelin regulates nuclear pore complex proteins Nup98 and Nup88 in U937 cells in vitro. Acta Pharmacol Sin 26(10):1265–1273, eng

    Article  PubMed  Google Scholar 

  20. Chen WH, Chen Y, Cui GH (2006) Deguelin inhibits expression of IkappaBalpha protein in Raji and U937 cells. Acta Pharmacol Sin 27(4):485–490, eng

    Article  PubMed  Google Scholar 

  21. Shu W, Chen Y, Wu Q, Li R, Cui G (2008) Deguelin represses both the expression of nucleophosmin and some nucleoporins: Nup88 and Nup214 in Jurkat cells. Biol Pharm Bull 31(1):27–32, eng

    Article  CAS  PubMed  Google Scholar 

  22. Balusu R, Fiskus W, Rao R, Chong DG, Nalluri S, Mudunuru U et al (2011) Targeting levels or oligomerization of nucleophosmin 1 induces differentiation and loss of survival of human AML cells with mutant NPM1. Blood 118(11):3096–3106, eng

    Article  CAS  PubMed  Google Scholar 

  23. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281(5381):1312–1316, eng

    Article  CAS  PubMed  Google Scholar 

  24. Bratton SB, MacFarlane M, Cain K, Cohen GM (2000) Protein complexes activate distinct caspase cascades in death receptor and stress-induced apoptosis. Exp Cell Res 256(1):27–33, eng

    Article  CAS  PubMed  Google Scholar 

  25. Greil R, Anether G, Johrer K, Tinhofer I (2003) Tuning the rheostat of the myelopoietic system via Fas and TRAIL. Crit Rev Immunol 23(4):301–322, eng

    Article  CAS  PubMed  Google Scholar 

  26. Leong SM, Tan BX, Bte Ahmad B, Yan T, Chee LY, Ang ST et al (2010) Mutant nucleophosmin deregulates cell death and myeloid differentiation through excessive caspase-6 and -8 inhibition. Blood 116(17):3286–3296, eng

    Article  CAS  PubMed  Google Scholar 

  27. Bortul R, Tazzari PL, Billi AM, Tabellini G, Mantovani I, Cappellini A et al (2005) Deguelin, A PI3K/AKT inhibitor, enhances chemosensitivity of leukaemia cells with an active PI3K/AKT pathway. Br J Haematol 129(5):677–686, eng

    Article  CAS  PubMed  Google Scholar 

  28. Carter BZ, Milella M, Tsao T, McQueen T, Schober WD, Hu W et al (2003) Regulation and targeting of antiapoptotic XIAP in acute myeloid leukemia. Leukemia 17(11):2081–2089, eng

    Article  CAS  PubMed  Google Scholar 

  29. Lew QJ, Tan CH, Gurumurthy M, Chu KL, Cheong N, Lane DP et al (2011) NPMc(+) AML cell line shows differential protein expression and lower sensitivity to DNA-damaging and p53-inducing anticancer compounds. Cell Cycle 10(12):1978–1987, eng

    Article  CAS  PubMed  Google Scholar 

  30. Falini B, Bolli N, Liso A, Martelli MP, Mannucci R, Pileri S et al (2009) Altered nucleophosmin transport in acute myeloid leukaemia with mutated NPM1: molecular basis and clinical implications. Leukemia 23(10):1731–1743, eng

    Article  CAS  PubMed  Google Scholar 

  31. Rosenbauer F, Tenen DG (2007) Transcription factors in myeloid development: balancing differentiation with transformation. Nat Rev Immunol 7(2):105–117, eng

    Article  CAS  PubMed  Google Scholar 

  32. Pulikkan JA, Dengler V, Peer Zada AA, Kawasaki A, Geletu M, Pasalic Z et al (2010) Elevated PIN1 expression by C/EBPalpha-p30 blocks C/EBPalpha-induced granulocytic differentiation through c-Jun in AML. Leukemia 24(5):914–923, eng

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Pandey P, Nakazawa A, Ito Y, Datta R, Kharbanda S, Kufe D (2000) Requirement for caspase activation in monocytic differentiation of myeloid leukemia cells. Oncogene 19(34):3941–3947, eng

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Brunangelo Falini, University of Perugia, for kindly providing the NPM1 mutation-specific antibody. The authors would also like to thank M.D. Minden (Ontario Cancer Institute, Toronto, ON, Canada) for providing the AML cell lines OCI-AML3 and OCIM2. This work was supported by the National Natural Science Foundation of China (no. 81070429 and no. 81372541).

Conflict of interest

None declared

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guohui Cui or Yan Chen.

Additional information

Sha Yi and Lu Wen contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 29 kb)

Fig. 1

Effect of deguelin on AML cells. (a) OCI-AML3 cells were treated with the indicated drugs for 48 h, and the protein levels of NPM-mut and NPM-wt were detected by western blot. γ-tubulin was used as a protein loading control. The histogram (b) shows the relative protein density of these proteins. (GIF 16 kb)

High resolution image (TIFF 2641 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, S., Wen, L., He, J. et al. Deguelin, a selective silencer of the NPM1 mutant, potentiates apoptosis and induces differentiation in AML cells carrying the NPM1 mutation. Ann Hematol 94, 201–210 (2015). https://doi.org/10.1007/s00277-014-2206-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-014-2206-x

Keywords

Navigation