Skip to main content

Advertisement

Log in

Down-regulation of Musashi-2 exerts antileukemic effects on acute lymphoblastic leukemia cells and increases sensitivity to dexamethasone

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Musashi-2 (MSI2), implicated in the oncogenesis and propagation of a broad array of malignancies, inclusive of certain leukemia, remains a nascent field of study within the context of acute lymphoblastic leukemia (ALL). Using lentiviral transfection, ALL cells with stable MSI2 knockdown were engineered. A suite of analytic techniques – a CCK-8 assay, flow cytometry, qRT-PCR, and western blotting – were employed to evaluate cellular proliferation, cell cycle arrest, and apoptosis and to confirm differential gene expression. The suppression of MSI2 expression yielded significant results: inhibition of cell proliferation, G0/G1 cell cycle arrest, and induced apoptosis in ALL cell lines. Furthermore, it was noted that MSI2 inhibition heightened the responsiveness of ALL cells to dexamethasone. Significantly, the depletion of MSI2 prompted the translocation of GR from the cytoplasm to the nucleus upon dexamethasone treatment, consequently leading to enhanced sensitivity. Additionally, the FOXO1/4 signaling pathway contributed to the biological effects of ALL cells evoked by MSI2 silencing. Our study offers novel insight into the inhibitory effects of MSI2 suppression on ALL cells, positing MSI2 as a promising therapeutic target in the treatment of ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article/supplementary materials, further inquiries can be directed to the corresponding author.

References

  1. Hong Z, Wei Z, Xie T, Fu L, Sun J, Zhou F, Jamal M, Zhang Q, Shao L (2021) Targeting chemokines for acute lymphoblastic leukemia therapy. J Hematol Oncol 14(1):48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Chiarini F, Lonetti A, Evangelisti C, Buontempo F, Orsini E, Evangelisti C, Cappellini A, Neri LM, McCubrey JA (1863) Martelli AM (2016) Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: from biology to therapeutic targeting. Biochem Biophys Acta 3:449–463

    Google Scholar 

  3. Teachey DT, Pui CH (2019) Comparative features and outcomes between paediatric T-cell and B-cell acute lymphoblastic leukaemia. Lancet Oncol 20(3):e142–e154

    Article  PubMed  PubMed Central  Google Scholar 

  4. Park SM, Gönen M, Vu L, Minuesa G, Tivnan P, Barlowe TS, Taggart J, Lu Y, Deering RP, Hacohen N, Figueroa ME, Paietta E, Fernandez HF, Tallman MS, Melnick A, Levine R, Leslie C, Lengner CJ, Kharas MG (2015) Musashi2 sustains the mixed-lineage leukemia-driven stem cell regulatory program. J Clin Invest 125(3):1286–1298

    Article  PubMed  PubMed Central  Google Scholar 

  5. Perry JM, Tao F, Roy A, Lin T, He XC, Chen S, Lu X, Nemechek J, Ruan L, Yu X, Dukes D, Moran A, Pace J, Schroeder K, Zhao M, Venkatraman A, Qian P, Li Z, Hembree M, Paulson A, He Z, Xu D, Tran TH, Deshmukh P, Nguyen CT, Kasi RM, Ryan R, Broward M, Ding S, Guest E, August K, Gamis AS, Godwin A, Sittampalam GS, Weir SJ, Li L (2020) Overcoming Wnt-β-catenin dependent anticancer therapy resistance in leukaemia stem cells. Nat Cell Biol 22(6):689–700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kharas MG, Lengner CJ (2017) Stem cells, cancer, and MUSASHI in blood and guts. Trends Cancer 3(5):347–356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Imai T, Tokunaga A, Yoshida T, Hashimoto M, Mikoshiba K, Weinmaster G, Nakafuku M, Okano H (2001) The neural RNA-binding protein Musashi1 translationally regulates mammalian numb gene expression by interacting with its mRNA. Mol Cell Biol 21(12):3888–3900

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Sakakibara S, Nakamura Y, Satoh H, Okano H (2001) RNA-binding protein Musashi2: developmentally regulated expression in neural precursor cells and subpopulations of neurons in mammalian CNS. J Neurosci 21(20):8091–8107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hadziselimovic N, Vukojevic V, Peter F, Milnik A, Fastenrath M, Fenyves BG, Hieber P, Demougin P, Vogler C, de Quervain DJ, Papassotiropoulos A, Stetak A (2014) Forgetting is regulated via Musashi-mediated translational control of the Arp2/3 complex. Cell 156:1153–1166

    Article  PubMed  CAS  Google Scholar 

  10. Fox RG, Park FD, Koechlein CS, Kritzik M, Reya T (2015) Musashi signaling in stem cells and cancer. Annu Rev Cell Dev Biol 31:249–267

    Article  PubMed  CAS  Google Scholar 

  11. Kudinov AE, Karanicolas J, Golemis EA, Boumber Y (2017) Musashi RNA-binding proteins as cancer drivers and novel therapeutic targets. Clin Cancer Res 23(9):2143–2153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Chiou GY, Yang TW, Huang CC, Tang CY, Yen JY, Tsai MC, Chen HY, Fadhilah N, Lin CC, Jong YJ (2017) Musashi-1 promotes a cancer stem cell lineage and chemoresistance in colorectal cancer cells. Sci Rep 7(1):2172

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen HY, Wang ML, Laurent B, Hsu CH, Chen MT, Lin LT, Shen J, Chang WC, Hsu J, Hung MC, Chen YW, Huang PI, Yang YP, Li CP, Ma HI, Chen CH, Lin WC, Chiou SH (2020) Musashi-1 promotes stress-induced tumor progression through recruitment of AGO2. Theranostics 10(1):201–217

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hope KJ, Cellot S, Ting SB, MacRae T, Mayotte N, Iscove NN, Sauvageau G (2010) An RNAi screen identifies Msi2 and Prox1 as having opposite roles in the regulation of hematopoietic stem cell activity. Cell Stem Cell 7(1):101–113

    Article  PubMed  CAS  Google Scholar 

  15. Kharas MG, Lengner CJ, Al-Shahrour F, Bullinger L, Ball B, Zaidi S, Morgan K, Tam W, Paktinat M, Okabe R, Gozo M, Einhorn W, Lane SW, Scholl C, Fröhling S, Fleming M, Ebert BL, Gilliland DG, Jaenisch R, Daley GQ (2010) Musashi-2 regulates normal hematopoiesis and promotes aggressive myeloid leukemia. Nat Med 16:903–908

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Byers RJ, Currie T, Tholouli E, Rodig SJ, Kutok JL (2011) MSI2 protein expression predicts unfavorable outcome in acute myeloid leukemia. Blood 118:2857–2867

    Article  PubMed  CAS  Google Scholar 

  17. Ito T, Kwon HY, Zimdahl B, Congdon KL, Blum J, Lento WE, Zhao C, Lagoo A, Gerrard G, Foroni L, Goldman J, Goh H, Kim SH, Kim DW, Chuah C, Oehler VG, Radich JP, Jordan CT, Reya T (2010) Regulation of myeloid leukaemia by the cell-fate determinant Musashi. Nature 466(7307):765–768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Palacios F, Yan XJ, Ferrer G, Chen SS, Vergani S, Yang X, Gardner J, Barrientos JC, Rock P, Burack R, Kolitz JE, Allen SL, Kharas MG, Abdel-Wahab O, Rai KR, Chiorazzi N (2021) Musashi 2 influences chronic lymphocytic leukemia cell survival and growth making it a potential therapeutic target. Leukemia 35(4):1037–1052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Mu Q, Wang Y, Chen B, Qian W, Meng H, Tong H, Chen F, Ma Q, Ni W, Chen S, Jin J (2013) High expression of Musashi-2 indicates poor prognosis in adult B-cell acute lymphoblastic leukemia. Leuk Res 37:922–927

    Article  PubMed  CAS  Google Scholar 

  20. Lu S, Mu Q, Yu M, Yin X, Chen J, Jin J (2016) Overexpression of musashi2 is possibly associated with chemoresistance in T-cell acute lymphoblastic leukemia. Leuk Lymphoma 57(2):467–469

    Article  PubMed  Google Scholar 

  21. Lee J, An S, Choi YM, Lee J, Ahn KJ, Lee JH, Kim TJ, An IS, Bae S (2016) Musashi-2 is a novel regulator of paclitaxel sensitivity in ovarian cancer cells. Int J Oncol 49(5):1945–1952

    Article  PubMed  CAS  Google Scholar 

  22. Zou D, Chen Y, Wu N, Zhang Y, Ouyang G, Mu Q (2021) MLL-SEPT5 Fusion transcript in myelodysplastic syndrome patient with t(11;22)(q23;q11). Front Med (Lausanne) 8:783229

    Article  PubMed  Google Scholar 

  23. Guo S, Li B, Chen Y, Zou D, Yang S, Zhang Y, Wu N, Sheng L, Huang H, Ouyang G, Mu Q (2020) Hsa_circ_0012152 and Hsa_circ_0001857 Accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Front Oncol 10:1655

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sykes SM, Lane SW, Bullinger L, Kalaitzidis D, Yusuf R, Saez B, Ferraro F, Mercier F, Singh H, Brumme KM, Acharya SS, Scholl C, Tothova Z, Attar EC, Fröhling S, DePinho RA, Armstrong SA, Gilliland DG, Scadden DT (2011) AKT/FOXO signaling enforces reversible differentiation blockade in myeloid leukemias. Cell 146(5):697–708

    Article  PubMed  CAS  Google Scholar 

  25. Sheng Y, Yu C, Liu Y, Hu C, Ma R, Lu X, Ji P, Chen J, Mizukawa B, Huang Y, Licht JD, Qian Z (2020) FOXM1 regulates leukemia stem cell quiescence and survival in MLL-rearranged AML. Nat Commun 11(1):928

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Sheng W, Shi X, Lin Y, Tang J, Jia C, Cao R, Sun J, Wang G, Zhou L, Dong M (2020) Musashi2 promotes EGF-induced EMT in pancreatic cancer via ZEB1-ERK/MAPK signaling. J Exp Clin Cancer Res 39(1):16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Tsujino T, Sugito N, Taniguchi K, Honda R, Komura K, Yoshikawa Y, Takai T, Minami K, Kuranaga Y, Shinohara H, Tokumaru Y, Heishima K, Inamoto T, Azuma H, Akao Y (2019) MicroRNA-143/Musashi-2/KRAS cascade contributes positively to carcinogenesis in human bladder cancer. Cancer Sci 110(7):2189–2199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Zhao HZ, Jia M, Luo ZB, Cheng YP, Xu XJ, Zhang JY, Li SS, Tang YM (2016) Prognostic significance of the Musashi-2 (MSI2) gene in childhood acute lymphoblastic leukemia. Neoplasma 63(1):150–157

    Article  PubMed  CAS  Google Scholar 

  29. Aly RM, Ghazy HF (2015) Prognostic significance of MSI2 predicts unfavorable outcome in adult B-acute lymphoblastic leukemia. Int J Lab Hematol 37(2):272–278

    Article  PubMed  CAS  Google Scholar 

  30. Teixeira Mendes LS, Peters N, Attygalle AD, Wotherspoon A (2017) Cyclin D1 overexpression in proliferation centres of small lymphocytic lymphoma/chronic lymphocytic leukaemia. J Clin Pathol 70(10):899–902

    Article  PubMed  Google Scholar 

  31. O’Connor MJ, Thakar T, Nicolae CM, Moldovan GL (2021) PARP14 regulates cyclin D1 expression to promote cell-cycle progression. Oncogene 40(30):4872–4883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zhou W, Xu S, Ying Y, Zhou R, Chen X (2017) Resveratrol suppresses growth and migration of myelodysplastic cells by inhibiting the expression of elevated cyclin D1 (CCND1). DNA Cell Biol 36(11):966–975

    Article  PubMed  CAS  Google Scholar 

  33. Wang M, Sun XY, Zhou YC, Zhang KJ, Lu YZ, Liu J, Huang YC, Wang GZ, Jiang S, Zhou GB (2020) Suppression of Musashi-2 by the small compound largazole exerts inhibitory effects on malignant cells. Int J Oncol 56(5):1274–1283

    PubMed  CAS  Google Scholar 

  34. García-Alegría E, Lafita-Navarro MC, Aguado R, García-Gutiérrez L, Sarnataro K, Ruiz-Herguido C, Martín F, Bigas A, Canelles M, León J (2016) NUMB inactivation confers resistance to imatinib in chronic myeloid leukemia cells. Cancer Lett 375(1):92–99

    Article  PubMed  Google Scholar 

  35. Han Y, Ye A, Zhang Y, Cai Z, Wang W, Sun L, Jiang S, Wu J, Yu K, Zhang S (2015) Musashi-2 silencing exerts potent activity against acute myeloid leukemia and enhances chemosensitivity to daunorubicin. PLoS ONE 10(8):e0136484

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lv M, Wang Y, Wu W, Yang S, Zhu H, Hu B, Chen Y, Shi C, Zhang Y, Mu Q, Ouyang G (2018) C-Myc inhibitor 10058-F4 increases the efficacy of dexamethasone on acute lymphoblastic leukaemia cells. Mol Med Rep 18(1):421–428

    PubMed  CAS  Google Scholar 

  37. Byun JW, An HY, Yeom SD, Lee SJ, Chung HY (2018) NDRG1 and FOXO1 regulate endothelial cell proliferation in infantile haemangioma. Exp Dermatol 27(6):690–693

    Article  PubMed  CAS  Google Scholar 

  38. Fitzwalter BE, Towers CG, Sullivan KD, Andrysik Z, Hoh M, Ludwig M, O’Prey J, Ryan KM, Espinosa JM, Morgan MJ, Thorburn A (2018) Autophagy inhibition mediates apoptosis sensitization in cancer therapy by relieving FOXO3a turnover. Dev Cell 44(5):555-565.e3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Yang X, Zhang F, Liu X, Meng J, Du S, Shao J, Liu J, Fang M (2022) FOXO4 mediates resistance to oxidative stress in lens epithelial cells by modulating the TRIM25/Nrf2 signaling. Exp Cell Res 420(1):113340

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work garnered support from the Medical and Health Science and Technology Projects of Zhejiang Province (Grant Numbers: 2019KY170 and 2023KY1050), the Natural Science Foundation of Ningbo (Grant Number: 2022J208), and partially from the Zhejiang Provincial Natural Science Foundation of China (Grant Number: LY20H080001).

Author information

Authors and Affiliations

Authors

Contributions

D Zou and M Lv performed the majority of the experiments, while Y Wu, Z Huang, and C Ma contributed to a portion of the experimental procedures. C Shi, Y Wang, and S Yang conducted the experimental analysis. T Niu and Y Chen performed statistical analysis. Q Mu and G Ouyang conceptualized the study and also assisted in manuscript composition. D Zou primarily drafted the manuscript, while Y Zhang and N Wu undertook editorial duties. All authors have read and given their approval to the final manuscript.

Corresponding authors

Correspondence to Guifang Ouyang or Qitian Mu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, D., Lv, M., Chen, Y. et al. Down-regulation of Musashi-2 exerts antileukemic effects on acute lymphoblastic leukemia cells and increases sensitivity to dexamethasone. Ann Hematol 103, 141–151 (2024). https://doi.org/10.1007/s00277-023-05468-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-023-05468-z

Keywords

Navigation