Skip to main content
Log in

Polarized Raman spectroscopy and lattice dynamics of potassic-magnesio-arfvedsonite

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

We report polarized Raman spectra from potassic-magnesio-arfvedsonite in all informative scattering configurations. On the basis of the polarization selection rules, several Ag vibrational modes have been identified. The Bg modes, however, are below the detection limits of the Raman spectrometer. The OH stretching band is situated between 3630 and 3750 cm−1, and its spectral shape is typical of amphiboles with high occupancy of the A site. It is composed of seven overlapping but resolvable subbands, which stem from occupied A-site configurations M(1)M(1)M(3)–OH–A(K/Na)–WOH and M(1)M(1)M(3)–OH–A(K/Na)–WF, as well as from vacant A-site configurations M(1)M(1)M(3)–OH–A□–WOH, with different Mg and Fe occupancy of the M(1) and M(3) sites. The experimental Raman spectra are compared with the results of theoretical calculations based on a shell-model force-field and a bond polarizability model. The simulated partial Raman spectra allowed us to assign many low-frequency Raman bands to stretching vibrations involving specific cation-oxygen bonds, as well as the higher-frequency modes of the Si–O skeleton. On the basis of our calculations we hypothesize that the Raman bands at 467, 540 and 589 cm−1 are related to a superposition of M(2)Fe3+–O bond stretching and Si–O–Si bending vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Apopei IA, Buzgar N (2010) The Raman study of amphiboles. Sci Ann Alexandru Ioan Cuza Univ Iasi Geol 56:57–83

    Google Scholar 

  • Chen T-H, Calligaro T, Pagès-Camagna S, Menu M (2004) Investigation of Chinese archaic jade by PIXE and µRaman spectrometry. J Appl Phys A 79:177–180

    Article  Google Scholar 

  • Della Ventura G, Robert J-L, Bény J-M, Raudsepp M, Howthorne FC (1993) The OH–F substitution in Ti-rich potassium richterite: Rietveld structure refinement and FTIR and micro-Ramans spectroscopic studies of synthetic amphiboles in the system K2O–Na2O–CaO–MgO–SiO2–TiO2–H2O–HF. Am Mineral 78:980–987

    Google Scholar 

  • Della Ventura G, Oberti R, Hawthorne FC, Bellatreccia F (2007) FTIR spectroscopy of Ti-rich pargasites from Lherz and the detection of O2− at the anionic O3 site in amphiboles. Am Mineral 92:1645–1651

    Article  Google Scholar 

  • Della Ventura G, Mihailova B, Susta U, Guidi MC, Marcelli A, Schlüter J, Oberti R (2018) The dynamics of Fe oxidation in riebeckite: a model for amphiboles. Am Mineral 103:1103–1111

    Article  Google Scholar 

  • Dick BG, Overhauser AW (1958) Theory of the dielectric constants of alkali halide crystals. Phys Rev 112:90–103

    Article  Google Scholar 

  • Dyulgerov M, Platevoet B (2006) Unusual Ti and Zr aegirine–augite and potassic magnesio-arfvedsonite in the peralkaline potassic rocks from Buhovo-Seslavtzi complex, Bulgaria. Eur J Mineral 18:127–138

    Article  Google Scholar 

  • Dyulgerov M, Platevoet B, Oberti R, Kadiyski M, Rusanov V (2017) Potassic-magnesio-arfvedsonite, IMA 2016-083. CNMNC Newsletter No. 35, February 2017, page 149. Eur J Mineral 29:149–152

    Article  Google Scholar 

  • Dyulgerov M, Oberti R, Platevoet B, Kadiiski M, Rusanov V (2018) Potassic-magnesio-arfvedsonite—KNa2(MgFe2+Fe3+)5Si8O22(OH)2: mineral description and crystal chemistry. Mineral Mag (accepted)

  • Fornero E, Allegrina M, Rinaudo C, Mazziotti-Tagliani S, Gianfafagna A (2008) Micro-Raman spectroscopy applied on oriented crystals of fluoro-edenite amphibole. Per Mineral 77(2):5–14

    Google Scholar 

  • Gale JD, Rohl AL (2003) The general utility lattice program (GULP). Mol Simul 29:291–341

    Article  Google Scholar 

  • Go S, Bilz H, Cardona M (1974) Bond charge, bond polarizability, and phonon spectra in semiconductors. Phys Rev Lett 34:580–583

    Article  Google Scholar 

  • Goryaeva AM, Carrez P, Cordier P (2015) Modeling defects and plasticity in MgSiO3 postperovskite: part 1—generalized stacking faults. Phys Chem Miner 42:781–792

    Article  Google Scholar 

  • Hanumantha Rao K, Kundu TK, Parker SC (2012) Molecular modeling of mineral surface reactions in flotation. In: Rai B (ed) Molecular modeling for the design of novel performance chemicals and materials. CRC Press, Boca Raton, pp 65–105. https://doi.org/10.1201/b11590

    Chapter  Google Scholar 

  • Hassanali AA, Singer SJJ (2007) Model for the water—amorphous silica interface: the undissociated surface. Phys Chem B 111:11181–11193

    Article  Google Scholar 

  • Hawthorne FC, Ventura GD (2007) Short-range order in amphiboles. In: Hawthorne FC, Oberti R, Ventura GD, Mottana A (eds) Review in mineralogy and geochemistry, vol 67. Mineralogical Society of America and Geochemical Society, Washington DC, pp 173–222

    Google Scholar 

  • Kloprogge JT, Visser D, Ruan H, Frost RL (2001) Infrared and Raman spectroscopy of holmquistite, Li2(Mg,Fe2+)3(Al,Fe3+)2(Si,Al)8O22(OH)2. J Mater Sci Lett 20:1497–1499

    Article  Google Scholar 

  • Leissner L, Schlüte J, Horn I, Mihailova B (2015a) Crystal chemistry of amphiboles by Raman spectroscopy. Periodico di Mineralogia ECMS 2015:109–110

    Google Scholar 

  • Leissner L, Schlüte J, Horn I, Mihailova B (2015b) Exploring the potential of Raman spectroscopy for crystallochemical analyses of complex hydrous silicates: I. Amphiboles. Am Mineral 100:2682–2694

    Article  Google Scholar 

  • Lippincott ER, Stutman JM (1964) Polarizabilities from δ-function potentials. J Phys Chem 68:2926–2940

    Article  Google Scholar 

  • Makreski P, Jovanovski G, Gajović A (2006) Minerals from Macedonia: XVII. Vibrational spectra of some common appearing amphiboles. Vib Spectrosc 40:98–109

    Article  Google Scholar 

  • Nakamoto K (2009) Infrared and Raman Spectra of inorganic and coordination compounds. Part A: theory and applications in inorganic chemistry. Wiley, New York, pp 192–204

    Google Scholar 

  • Petry R, Mastalerz R, Zahn S, Mayerhöfer TG, Völksch G, Viereck-Götte L, Kreher-Hartmann B, Holz L, Lankers M, Popp J (2006) Asbestos mineral analysis by UV Raman and energy-dispersive X-ray spectroscopy. ChemPhysChem 7:414–420

    Article  Google Scholar 

  • Robert J-L, Della Ventura G, Hawthorne FC (1999) Near-infrared study of short-range disorder of OH and F in monoclinic amphiboles. Am Mineral 84:86–91

    Article  Google Scholar 

  • Sanders MJ, Leslie M, Catlow CRA (1984) Interatomic potentials for SiO2. J Chem Soc Chem Commun. https://doi.org/10.1039/C39840001271

    Article  Google Scholar 

  • Sbroscia M, Della Ventura G, Iezzi G, Sodo A (2018) Quantifying the A-site occupancy in amphiboles: a Raman study in the OH-stretching region. Eur J Mineral. https://doi.org/10.1127/ejm/2018/0030-2727

    Article  Google Scholar 

  • Su W, Zhang M, Redfern SAT, Gao J, Klemd R (2009) OH in zoned amphiboles of eclogite from the western Tianshan, NW-China. Int J Earth Sci 98:1299–1309

    Article  Google Scholar 

  • Susta U, Della Ventura G, Hawthorne FC, Abdu YA, Day MC, Mihailova B, Oberti R (2018) The crystal-chemistry of riebeckite, ideally Na2Fe3 2+Fe2 3+Si8O22(OH)2: a multidisciplinary study. Mineral Mag. https://doi.org/10.1180/minmag.2017.081.064

    Article  Google Scholar 

  • Wang A, Dhamelincourt P, Turrell G (1988a) Raman microspectroscopic study of the cation distribution in amphibole. Appl Spectrosc 42:1441–1450

    Article  Google Scholar 

  • Wang A, Dhamelincourt P, Turrell G (1988b) Infrared and low-temperature micro-Raman spectra of the OH stretching vibrations in cummingtonite. Appl Spectrosc 42:1451–1457

    Article  Google Scholar 

  • Zotov N, Ebbsjö I, Timpel D, Keppler H (1999) Calculation of Raman spectra and vibrational properties of silicate glasses: comparison between Na2Si4O9 and SiO2 glasses. Phys Rev B 60:6383–6397

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant DH 14/8 of the National Science Fund of the Ministry of Education and Science of Bulgaria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor G. Ivanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, V.G., Dyulgerov, M. & Oberti, R. Polarized Raman spectroscopy and lattice dynamics of potassic-magnesio-arfvedsonite. Phys Chem Minerals 46, 181–191 (2019). https://doi.org/10.1007/s00269-018-0996-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-018-0996-4

Keywords

Navigation