Skip to main content
Log in

A Raman and Infrared Spectroscopic Study of the Phosphate Mineral Pseudolaueite and in Comparison with Strunzite and Ferrostrunzite

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The Raman spectra of pseudolaueite, strunzite, ferrostrunzite and ferristrunzite have been obtained at 298 K using Raman microscopy. These spectra are compared with their infrared spectra. The vibrational spectra of the four minerals are different, in line with differences in crystal structure and composition. Some similarity in the Raman spectra of the hydroxyl-stretching region exists, particularly but characteristic differences in the OH deformation regions are observed. Differences are also observed in the phosphate stretching and deformation regions.

Graphical Abstract

This paper offers new knowledge and understanding of the mineral pseudolaueite of formula Mn2+Fe2 3+(PO4)2(OH)2·8H2O,a hydrated hydroxy phosphate of ferric iron and manganese.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baur WH (1969) Comparison of the crystal structures of pseudolaueite and laueite. Am Min 54:1310–1321

    CAS  Google Scholar 

  2. Dunn PJ (1985) New occurrences for ushkovite and comments on laueite. Min Rec 16:463–464

    CAS  Google Scholar 

  3. Moore PB (1965) The crystal structure of laueite, Mn2+Fe2 3+(OH)2(PO4)2(H2O)6⋅2H2O. Am. Min 50:1884–1892

    CAS  Google Scholar 

  4. Moore PB (1975) Laueite, pseudolaueite, stewartite, and metavauxite. Combinatorial polymorphism, Neues Jahrbuch f Min Ab 123:148–159

  5. Moore PB, Araki T (1974) Stewartite, Mn2+Fe2 3+(OH)2(H2O)6[PO4]2⋅2H2O. Its atomic arrangement. Am Min 59:1272–1276

    CAS  Google Scholar 

  6. Galliski MA, Hawthorne FC (2002) Refinement of the crystal structure of ushkovite from Nevados de Palermo, Republica Argentina. Can Min 40:929–937

    Article  CAS  Google Scholar 

  7. Frost RL, Scholz R, Lopez A, Xi Y (2014) A vibrational spectroscopic study of the phosphate mineral whiteite CaMn++ Mg2Al2(PO4)4(OH)2·8(H2O). Spectrochim Acta A124:243–248

    Google Scholar 

  8. Frost RL, Scholz R, Lopez A, Lana C, Xi Y (2014) A Raman and infrared spectroscopic analysis of the phosphate mineral wardite NaAl3(PO4)2(OH)4·2(H2O) from Brazil. Spectrochim Acta A 126:164–169

    Article  CAS  Google Scholar 

  9. Frost RL, Scholz R, Lopez A, Firmino BE, Lana C, Xi Y (2014) A Raman and infrared spectroscopic characterisation of the phosphate mineral phosphohedyphane Ca2Pb3(PO4)3Cl from the Roote mine, Nevada, USA. Spectrochim Acta A 127:237–242

    Article  CAS  Google Scholar 

  10. Frost RL, Lopez A, Xi Y, Scholz R (2014) A study of the phosphate mineral kapundaite NaCa(Fe3+)4(PO4)4(OH)3⋅5(H2O) using SEM/EDX and vibrational spectroscopic methods. Spectrochim Acta Part A 122:400–404

    Article  CAS  Google Scholar 

  11. Frost RL, Lopez A, Xi Y, Scholz R (2014) Vibrational spectroscopic characterization of the phosphate mineral althausite Mg2(PO4)(OH,F,O)—implications for the molecular structure. Spectrochim Acta Part A 120:252–256

    Article  CAS  Google Scholar 

  12. Frost RL, Lopez A, Xi Y, Gobac ZZ, Scholz R (2014) The molecular structure of the phosphate mineral vaeyrynenite: a vibrational spectroscopic study. Spectrosc Lett 47:253–260

    Article  CAS  Google Scholar 

  13. Frost RL, Lopez A, Theiss FL, Scholz R, Souza L (1074) The molecular structure of the phosphate mineral kidwellite NaFe9 3+(PO4)6(OH)11·3H2O—a vibrational spectroscopic study. J Mol Struct 2014:429–434

    Google Scholar 

  14. Frost RL, Lopez A, Theiss FL, Aarao GM, Scholz R (2014) A vibrational spectroscopic study of the phosphate mineral rimkorolgite (Mg, Mn2+)5(Ba, Sr)(PO4)4·8H2O from Kovdor massif, Kola Peninsula, Russia. Spectrochim Acta A 132:762–766

    Article  CAS  Google Scholar 

  15. Vochten R, De Grave E (1990) Moessbauer- and infrared spectroscopic characterization of ferristrunzite from Blaton, Belgium. Neues Jahrbuch f Min Mt 176–190

  16. Breitinger DK, Belz HH, Hajba L, Komlosi V, Mink J, Brehm G, Colognesi D, Parker SF, Schwab RG (2004) Combined vibrational spectra of natural wardite. J Mol Struct 706:95–99

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial and infra-structure support of the Discipline of Nanotechnology and Molecular Science, Science and Engineering Faculty of the Queensland University of Technology, is gratefully acknowledged. The Australian Research Council (ARC) is thanked for funding the instrumentation. R. Scholz thanks to CNPq—Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grants Nos. 306287/2012-9 and 402852/2012-5) and PROPP/UFOP, Project No. 03/2014. L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray L. Frost.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frost, R.L., Scholz, R. & Wang, L. A Raman and Infrared Spectroscopic Study of the Phosphate Mineral Pseudolaueite and in Comparison with Strunzite and Ferrostrunzite. J Chem Crystallogr 45, 391–400 (2015). https://doi.org/10.1007/s10870-015-0606-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-015-0606-y

Keywords

Navigation