Skip to main content
Log in

Effects of sagittal tibial osteotomy on frontal alignment of the knee and patellar height

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Aim of the study

The aim of this study was to evaluate the radiographic effect of sagittal tibial osteotomy (STO), flexion tibial osteotomy (FTO) and deflexion tibial osteotomy (DTO) around the knee. It has been hypothesized that proximal STO modifies patellar height and could cause varus/valgus changes of the anatomical tibial axis: The purpose of the study was to verify this and to analyse these modifications.

Method

Patients underwent proximal STO in our department between 2007 and 2018: overall 28 consecutive patients (19 males, 9 females; 28 knees). Twelve patients underwent DTO, and 16 patients underwent FTO. Two independent observers measured the pre-operative and post-operative radiological indexes: posterior tibial slope, Caton-Deschamps Index (CDI) and Modified Insall-Salvati Index (MISI) in the lateral views; medial Tibial Plateau-Tibial Shaft (mTPTS) and medial Femoral Shaft-Tibial Shaft (mFTA) anatomical angles were measured in the frontal plane.

Results

No complications were reported at the average follow-up of 1.6 ± 1.1 years. The mean mTPTS significantly increased from 0.6° ± 2.4° pre-operatively to 2.9° ± 2.6° of varus post-operatively (DTO (pre-operative 0.3 ± 3.1°, post-operative 2.4 ± 2.1°, ns); FTO (pre-operative 0.9 ± 1.9°, post-operative 3.2 ± 3.0°, P < 0.05)). The mean mFTA significantly reduced from 186.2° ± 4.9° pre-operatively to 182.7° ± 3.9° post-operatively (DTO (pre-operative 183.4 ± 3.3°, post-operative 180.6 ± 3.5°, ns); FTO (pre-operative 188.5 ± 4.9°, post-operative 184.4 ± 3.4°, P < 0.05)). The overall analysis reported no differences statistically significant in patellar height indexes.

Discussion

The main finding of this study is that STO slightly modifies tibial anatomical axes. This finding is more evident in FTOs. This surgical technique, due to its design, does not influence the patellar height. The tibial tuberosity osteotomy, performed in most of the cases to better expose tibial metaphysis and to avoid patellar tendon damages, provides another benefit that is the possibility to easily preserve the native patellar height.

Conclusion

Sagittal tibial osteotomies slightly modify tibial anatomical axes in frontal plan without influencing the patellar height. This surgical procedure resulted to be effective and reliable in correcting the sagittal knee alignment but reporting, particularly of FTO, varus changes of anatomical tibial axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bonasia DE, Dettoni F, Palazzolo A, Rossi R (2017) Opening wedge high tibial osteotomy and anterior cruciate ligament reconstruction or revision. Arthrosc Tech 6:e1735–e1741. https://doi.org/10.1016/j.eats.2017.06.044

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dejour D, Saffarini M, Demey G, Baverel L (2015) Tibial slope correction combined with second revision ACL produces good knee stability and prevents graft rupture. Knee Surg Sport Traumatol Arthrosc 23:2846–2852. https://doi.org/10.1007/s00167-015-3758-6

    Article  Google Scholar 

  3. Sonnery-Cottet B, Mogos S, Thaunat M et al (2014) Proximal tibial anterior closing wedge osteotomy in repeat revision of anterior cruciate ligament reconstruction. Am J Sports Med 42:1873–1880. https://doi.org/10.1177/0363546514534938

    Article  PubMed  Google Scholar 

  4. Magnussen RA, Dahm DL, Neyret P (2014) Osteotomy for slope correction following failed ACL reconstruction. In: Revision ACL reconstruction: indications and technique. pp 221–226

  5. Martineau PA, Fening SD, Miniaci A (2010) Anterior opening wedge high tibial osteotomy: the effect of increasing posterior tibial slope on ligament strain. Can J Surg 53:261–267

    PubMed  PubMed Central  Google Scholar 

  6. Sauer S, Clatworthy M (2018) The effect of medial tibial slope on anterior tibial translation and short-term ACL reconstruction outcome. Surg J 04:e160–e163. https://doi.org/10.1055/s-0038-1669929

    Article  Google Scholar 

  7. Schatka I, Weiler A, Jung TM et al (2018) High tibial slope correlates with increased posterior tibial translation in healthy knees. Knee Surg Sport Traumatol Arthrosc 26:2697–2703. https://doi.org/10.1007/s00167-017-4706-4

    Article  Google Scholar 

  8. Webb JM, Salmon LJ, Leclerc E et al (2013) Posterior tibial slope and further anterior cruciate ligament injuries in the anterior cruciate ligament-reconstructed patient. Am J Sports Med 41:2800–2804. https://doi.org/10.1177/0363546513503288

    Article  PubMed  Google Scholar 

  9. Giffin JR, Vogrin TM, Zantop T et al (2004) Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 32:376–382. https://doi.org/10.1177/0363546503258880

    Article  PubMed  Google Scholar 

  10. Lee CC, Youm YS, Cho SD et al (2018) Does posterior tibial slope affect graft rupture following anterior cruciate ligament reconstruction? Arthrosc - J Arthrosc Relat Surg 34:2152–2155. https://doi.org/10.1016/j.arthro.2018.01.058

    Article  Google Scholar 

  11. Grassi A, Macchiarola L, Urrizola Barrientos F et al (2019) Steep posterior Tibial slope, anterior tibial subluxation, deep posterior lateral femoral condyle, and meniscal deficiency are common findings in multiple anterior cruciate ligament failures: an MRI case-control study. Am J Sports Med 47:285–295. https://doi.org/10.1177/0363546518823544

    Article  PubMed  Google Scholar 

  12. Grassi A, Signorelli C, Urrizola F et al (2019) Patients with failed anterior cruciate ligament reconstruction have an increased posterior lateral tibial plateau slope: a case-controlled study. Arthrosc - J Arthrosc Relat Surg 35:1172–1182. https://doi.org/10.1016/j.arthro.2018.11.049

    Article  Google Scholar 

  13. Cantin O, Magnussen RA, Corbi F et al (2015) The role of high tibial osteotomy in the treatment of knee laxity: a comprehensive review. Knee surgery. Sport Traumatol Arthrosc 23:3026–3037

    Article  CAS  Google Scholar 

  14. Robin JG, Neyret P (2016) High tibial osteotomy in knee laxities: concepts review and results. EFORT Open Rev 1:3–11. https://doi.org/10.1302/2058-5241.1.000001

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nerhus TK, Ekeland A, Solberg G et al (2017) Radiological outcomes in a randomized trial comparing opening wedge and closing wedge techniques of high tibial osteotomy. Knee Surg Sport Traumatol Arthrosc 25:910–917. https://doi.org/10.1007/s00167-015-3817-z

    Article  Google Scholar 

  16. Lustig S, Scholes CJ, Costa AJ et al (2013) Different changes in slope between the medial and lateral tibial plateau after open-wedge high tibial osteotomy. Knee Surg Sport Traumatol Arthrosc 21:32–38. https://doi.org/10.1007/s00167-012-2229-6

    Article  CAS  Google Scholar 

  17. Hinterwimmer S, Beitzel K, Paul J et al (2011) Control of posterior tibial slope and patellar height in open-wedge valgus high tibial osteotomy. Am J Sports Med 39:851–856. https://doi.org/10.1177/0363546510388929

    Article  PubMed  Google Scholar 

  18. Marti CB, Gautier E, Wachtl SW, Jakob RP (2004) Accuracy of frontal and sagittal plane correction in open-wedge high tibial osteotomy. Arthrosc - J Arthrosc Relat Surg 20:366–372. https://doi.org/10.1016/j.arthro.2004.01.024

    Article  Google Scholar 

  19. Neyret P, Demey G (2014) Surgery of the knee

  20. Dejour H, Bonnin M (1994) Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg (Br) 76:745–749

    Article  CAS  Google Scholar 

  21. Caton J, Deschamps G, Chambat P et al (1982) Patella infera. Apropos of 128 cases. Rev Chir Orthop Reparatrice Appar Mot 68:317–325

    CAS  Google Scholar 

  22. Grelsamer RP, Meadows S (2006) The modified Insall-Salvati ratio for assessment of patellar height. Clin Orthop Relat Res NA;170–176. https://doi.org/10.1097/00003086-199209000-00022

  23. Insall J, Salvati E (2014) Patella position in the normal knee joint. Radiology 101:101–104. https://doi.org/10.1148/101.1.101

    Article  Google Scholar 

  24. Blackburne JS, Peel TE (1977) A new method of measuring patellar height. J Bone Joint Surg (Br) 59:241–242

    Article  CAS  Google Scholar 

  25. Watson NA, Duchman KR, Grosland NM, Bollier MJ (2017) Finite element analysis of patella alta: a patellofemoral instability model. Iowa Orthop J 37:101–108

    PubMed  PubMed Central  Google Scholar 

  26. Luceri F, Roger J, Randelli PS, et al (2020) How does isolated medial patellofemoral ligament reconstruction influence patellar height? Am J Sports Med 036354652090213. https://doi.org/10.1177/0363546520902132

  27. Pagnano MW, Hanssen AD (2001) Varus tibial joint line obliquity: a potential cause of femoral component malrotation. Clin Orthop Relat Res 68–74

  28. Cooke T, Pichora D, Siu D et al (2018) Surgical implications of varus deformity of the knee with obliquity of joint surfaces. J Bone Joint Surg (Br) 71–B:560–565. https://doi.org/10.1302/0301-620x.71b4.2768297

    Article  Google Scholar 

  29. Matsumoto T, Hashimura M, Takayama K et al (2015) A radiographic analysis of alignment of the lower extremities - initiation and progression of varus-type knee osteoarthritis. Osteoarthr Cartil 23:217–223. https://doi.org/10.1016/j.joca.2014.11.015

    Article  CAS  Google Scholar 

  30. Cooke D, Scudamore A, Li J et al (1997) Axial lower-limb alignment: comparison of knee geometry in normal volunteers and osteoarthritis patients. Osteoarthr Cartil 5:39–47. https://doi.org/10.1016/S1063-4584(97)80030-1

    Article  CAS  Google Scholar 

  31. Ducat A, Sariali E, Lebel B et al (2012) Posterior tibial slope changes after opening- and closing-wedge high tibial osteotomy: a comparative prospective multicenter study. Orthop Traumatol Surg Res 98:68–74. https://doi.org/10.1016/j.otsr.2011.08.013

    Article  CAS  PubMed  Google Scholar 

  32. Feucht MJ, Mauro CS, Brucker PU et al (2013) The role of the tibial slope in sustaining and treating anterior cruciate ligament injuries. Knee Surg Sport Traumatol Arthrosc 21:134–145

    Article  Google Scholar 

  33. Arthur A, LaPrade RF, Agel J (2007) Proximal tibial opening wedge osteotomy as the initial treatment for chronic posterolateral corner deficiency in the varus knee: a prospective clinical study. Am J Sports Med 35:1844–1850. https://doi.org/10.1177/0363546507304717

    Article  PubMed  Google Scholar 

  34. Moeller EM, Cross AR, Rapoff AJ (2006) Change in tibial plateau angle after tibial plateau leveling osteotomy in dogs. Vet Surg 35:460–464. https://doi.org/10.1111/j.1532-950X.2006.00175.x

    Article  PubMed  Google Scholar 

  35. Slocum B, Slocum TD (1993) Tibial plateau leveling osteotomy for repair of cranial cruciate ligament rupture in the canine. Vet Clin North Am Small Anim Pract 23:777–795

    Article  CAS  Google Scholar 

  36. Neyret P, Zuppi G, Selmi TA (2000) Tibial deflexion osteotomy. Oper Tech Sports Med 8:61–66. https://doi.org/10.1016/S1060-1872(00)80027-1

    Article  Google Scholar 

  37. Hohmann E, Bryant A, Reaburn P, Tetsworth K (2010) Does posterior tibial slope influence knee functionality in the anterior cruciate ligament-deficient and anterior cruciate ligament-reconstructed knee? Arthrosc - J Arthrosc Relat Surg 26:1496–1502. https://doi.org/10.1016/j.arthro.2010.02.024

    Article  Google Scholar 

  38. Mehta S, Mukherjee A (2018) Flexion osteotomy of the femur for genu recurvatum after poliomyelitis. J Bone Joint Surg (Br) 73–B:200–202. https://doi.org/10.1302/0301-620x.73b2.2005138

    Article  Google Scholar 

  39. Helou S, Pilliard D, Taussig G (1988) Flexion of the knee in poliomyelitis. Results and indications for femoral and tibial osteotomies. Int Orthop 12:125–134

    Article  CAS  Google Scholar 

  40. Savarese E, Bisicchia S, Romeo R, Amendola A (2011) Role of high tibial osteotomy in chronic injuries of posterior cruciate ligament and posterolateral corner. J Orthop Traumatol 12:1–17

    Article  Google Scholar 

  41. Petrigliano FA, Suero EM, Voos JE et al (2012) The effect of proximal tibial slope on dynamic stability testing of the posterior cruciate ligament- and posterolateral corner-deficient knee. Am J Sports Med 40:1322–1328. https://doi.org/10.1177/0363546512439180

    Article  PubMed  Google Scholar 

  42. Amendola A (2003) Unicompartmental osteoarthritis in the active patient: the role of high Tibial osteotomy. Arthroscopy 109–116

  43. Bonasia DE, Dettoni F, Sito G et al (2014) Medial opening wedge high tibial osteotomy for medial compartment overload/arthritis in the varus knee: prognostic factors. Am J Sports Med 42:690–698. https://doi.org/10.1177/0363546513516577

    Article  PubMed  Google Scholar 

  44. Cho SW, Kim DH, Lee GC et al (2013) Comparison between autogenous bone graft and allogenous cancellous bone graft in medial open wedge high tibial osteotomy with 2-year follow-up. Knee Surg Relat Res 25:117–125. https://doi.org/10.5792/ksrr.2013.25.3.117

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tokuhara Y, Kadoya Y, Nakagawa S et al (2004) The flexion gap in normal knees AN MRI STUDY. J Bone Jt Surg [Br] 8686:1133–1136. https://doi.org/10.1302/0301-620X.86B8

    Article  Google Scholar 

  46. Okazaki K, Miura H, Matsuda S et al (2006) Asymmetry of mediolateral laxity of the normal knee. J Orthop Sci 11:264–266. https://doi.org/10.1007/s00776-006-1009-x

    Article  PubMed  Google Scholar 

  47. Bendjaballah MZ, Shirazi-Adl A, Zukor DJ (1997) Finite element analysis of human knee joint in varus-valgus. Clin Biomech 12:139–148. https://doi.org/10.1016/S0268-0033(97)00072-7

    Article  CAS  Google Scholar 

  48. Weinberg DS, Williamson DFK, Gebhart JJ et al (2017) Differences in medial and lateral posterior tibial slope: an osteological review of 1090 tibiae comparing age, sex, and race. Am J Sports Med 45:106–113. https://doi.org/10.1177/0363546516662449

    Article  PubMed  Google Scholar 

  49. Noyes FR, Goebel SX, West J (2005) Opening wedge tibial osteotomy: the 3-triangle method to correct axial alignment and tibial slope. Am J Sports Med 33:378–387. https://doi.org/10.1177/0363546504269034

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Luceri.

Ethics declarations

Ethical approval

All procedures were performed in accordance with the ethical standards of the institutional and/or national research committee, the 1964 Helsinki declaration and its later amendments, or comparable ethical standards. The University Hospital Centre Review Board approved the study protocol (CAL n° 2018-037).

Statement of informed consent

As per institutional standards, formal patient consent is not required for this type of study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Level of evidence: IV, case series

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luceri, F., Basilico, M., Batailler, C. et al. Effects of sagittal tibial osteotomy on frontal alignment of the knee and patellar height. International Orthopaedics (SICOT) 44, 2291–2298 (2020). https://doi.org/10.1007/s00264-020-04580-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-020-04580-3

Keywords

Navigation