Skip to main content

Advertisement

Log in

Potentially functional variants of ERAP1, PSMF1 and NCF2 in the MHC-I-related pathway predict non-small cell lung cancer survival

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

Cellular immunity against tumor cells is highly dependent on antigen presentation by major histocompatibility complex class I (MHC-I) molecules. However, few published studies have investigated associations between functional variants of MHC-I-related genes and clinical outcomes of lung cancer patients.

Methods

We performed a two-phase Cox proportional hazards regression analysis by using two previously published genome-wide association studies to evaluate associations between genetic variants in the MHC-I-related gene set and the survival of non-small cell lung cancer (NSCLC) patients, followed by expression quantitative trait loci analysis.

Results

Of the 7811 single-nucleotide polymorphisms (SNPs) in 89 genes of 1185 NSCLC patients in the discovery dataset of the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial, 24 SNPs remained statistically significant after validation in additional 984 NSCLC patients from the Harvard Lung Cancer Susceptibility Study. In a multivariate stepwise Cox model, three independent functional SNPs (ERAP1 rs469783 T > C, PSMF1 rs13040574 C > A and NCF2 rs36071574 G > A) remained significant with an adjusted hazards ratio (HR) of 0.83 [95% confidence interval (CI) = 0.77–0.89, P = 8.0 × 10–7], 0.86 (0.80–0.93, P = 9.4 × 10–5) and 1.31 (1.11–1.54, P = 0.001) for overall survival (OS), respectively. Further combined genotypes revealed a poor survival in a dose–response manner in association with the number of unfavorable genotypes (Ptrend < 0.0001 and 0.0002 for OS and disease-specific survival, respectively). Also, ERAP1 rs469783C and PSMF1 rs13040574A alleles were associated with higher mRNA expression levels of their genes.

Conclusion

These potentially functional SNPs of the MHC-I-related genes may be biomarkers for NSCLC survival, possibly through modulating the expression of corresponding genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AUC:

Area under the receiver operating characteristic curve

BFDP:

Bayesian false discovery probability

CI:

Confidence interval

DSS:

Disease-specific survival

EAF:

Effect allele frequency

ERAP1:

Endoplasmic reticulum aminopeptidase 1

eQTL:

Expression quantitative trait loci

FDR:

False discovery rate

GWAS:

Genome-Wide Association Study

HLCS:

Harvard Lung Cancer Susceptibility

HR:

Hazards ratio

LD:

Linkage disequilibrium

LUAD:

Lung adenocarcinoma

LUSC:

Lung squamous cell carcinoma

MHC-I:

Major histocompatibility complex class I

NADPH:

Nicotinamide adenine dinucleotide phosphate

NSCLC:

Non-small cell lung cancer

NCF2:

Neutrophil cytosolic factor 2

OS:

Overall survival

PSMF1:

Proteasome inhibitor subunit 1

ROC:

Receiver operating characteristic

ROC:

Receiver operating characteristic curve

SNPs:

Single nucleotide polymorphisms

TCGA:

The Cancer Genome Atlas

PLCO:

The Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69:7–34

    Article  PubMed  Google Scholar 

  3. Goldstraw P, Ball D, Jett JR, Le Chevalier T, Lim E, Nicholson AG et al (2011) Non-small-cell lung cancer. Lancet 378:1727–1740

    Article  PubMed  Google Scholar 

  4. Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M et al (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352:786–792

    Article  CAS  PubMed  Google Scholar 

  5. Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B et al (2012) Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci Transl Med 4:120ra17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Article  CAS  PubMed  Google Scholar 

  7. Liu Y, Zeng G (2012) Cancer and innate immune system interactions: translational potentials for cancer immunotherapy. J Immunother 35:299–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ostrand-Rosenberg S (2008) Immune surveillance: a balance between protumor and antitumor immunity. Curr Opin Genet Dev 18:11–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570

    Article  CAS  PubMed  Google Scholar 

  10. Ryu R, Ward KE (2018) Atezolizumab for the First-Line Treatment of Non-small Cell Lung Cancer (NSCLC): current status and future prospects. Front Oncol 8:277

    Article  PubMed  PubMed Central  Google Scholar 

  11. Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gumus M, Mazieres J et al (2018) Pembrolizumab plus Chemotherapy for Squamous Non-Small-Cell Lung Cancer. N Engl J Med 379:2040–2051

    Article  CAS  PubMed  Google Scholar 

  12. Gandhi L, Rodriguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F et al (2018) Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N Engl J Med 378:2078–2092

    Article  CAS  PubMed  Google Scholar 

  13. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A et al (2016) Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N Engl J Med 375:1823–1833

    Article  CAS  PubMed  Google Scholar 

  14. Hughes AL, Hughes MK (1995) Natural selection on the peptide-binding regions of major histocompatibility complex molecules. Immunogenetics 42:233–243

    Article  CAS  PubMed  Google Scholar 

  15. Kobayashi KS, van den Elsen PJ (2012) NLRC5: a key regulator of MHC class I-dependent immune responses. Nat Rev Immunol 12:813–820

    Article  CAS  PubMed  Google Scholar 

  16. Huang YT, Heist RS, Chirieac LR, Lin X, Skaug V, Zienolddiny S et al (2009) Genome-wide analysis of survival in early-stage non-small-cell lung cancer. J Clin Oncol 27:2660–2667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu X, Ye Y, Rosell R, Amos CI, Stewart DJ, Hildebrandt MA et al (2011) Genome-wide association study of survival in non-small cell lung cancer patients receiving platinum-based chemotherapy. J Natl Cancer Inst 103:817–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xun WW, Brennan P, Tjonneland A, Vogel U, Overvad K, Kaaks R et al. (2011) Single-nucleotide polymorphisms (5p15.33, 15q25.1, 6p22.1, 6q27 and 7p15.3) and lung cancer survival in the European Prospective Investigation into Cancer and Nutrition (EPIC). Mutagenesis. 26: 657–666

  19. Wu X, Wang L, Ye Y, Aakre JA, Pu X, Chang GC et al (2013) Genome-wide association study of genetic predictors of overall survival for non-small cell lung cancer in never smokers. Cancer Res 73:4028–4038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hocking WG, Hu P, Oken MM, Winslow SD, Kvale PA, Prorok PC et al (2010) Lung cancer screening in the randomized Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. J Natl Cancer Inst 102:722–731

    Article  PubMed  PubMed Central  Google Scholar 

  21. Oken MM, Marcus PM, Hu P, Beck TM, Hocking W, Kvale PA et al (2005) Baseline chest radiograph for lung cancer detection in the randomized prostate, lung, colorectal and ovarian cancer screening trial. J Natl Cancer Inst 97:1832–1839

    Article  PubMed  Google Scholar 

  22. Tryka KA, Hao L, Sturcke A, Jin Y, Wang ZY, Ziyabari L et al (2014) NCBI’s Database of Genotypes and Phenotypes: dbGaP. Nucleic Acids Res 42:D975–D979

    Article  CAS  PubMed  Google Scholar 

  23. Mailman MD, Feolo M, Jin Y, Kimura M, Tryka K, Bagoutdinov R et al (2007) The NCBI dbGaP database of genotypes and phenotypes. Nat Genet 39:1181–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Asomaning K, Miller DP, Liu G, Wain JC, Lynch TJ, Su L et al (2008) Second hand smoke, age of exposure and lung cancer risk. Lung Cancer 61:13–20

    Article  PubMed  Google Scholar 

  25. Zhai R, Yu X, Wei Y, Su L, Christiani DC (2014) Smoking and smoking cessation in relation to the development of co-existing non-small cell lung cancer with chronic obstructive pulmonary disease. Int J Cancer 134:961–970

    Article  CAS  PubMed  Google Scholar 

  26. Aulchenko YS, Ripke S, Isaacs A, van Duijn CM (2007) GenABEL: an R library for genome-wide association analysis. Bioinformatics 23:1294–1296

    Article  CAS  PubMed  Google Scholar 

  27. Wakefield J (2007) A Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am J Hum Genet 81:208–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chambless LE, Diao G (2006) Estimation of time-dependent area under the ROC curve for long-term risk prediction. Stat Med 25:3474–3486

    Article  PubMed  Google Scholar 

  29. Lappalainen T, Sammeth M, Friedlander MR, t Hoen PA, Monlong J, Rivas MA et al (2013) Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501:506–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Consortium GT (2015) Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348:648–60

    Article  CAS  Google Scholar 

  31. Xu Z, Taylor JA (2009) SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. Nucleic Acids Res 37:W600–W605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M et al (2012) Annotation of functional variation in personal genomes using RegulomeDB. Genome Res 22:1790–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ward LD, Kellis M (2016) HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res 44:D877–D881

    Article  CAS  PubMed  Google Scholar 

  34. Wang Y, Liu H, Ready NE, Su L, Wei Y, Christiani DC et al (2016) Genetic variants in ABCG1 are associated with survival of nonsmall-cell lung cancer patients. Int J Cancer 138:2592–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim S, Jang JY, Koh J, Kwon D, Kim YA, Paeng JC et al (2019) Programmed cell death ligand-1-mediated enhancement of hexokinase 2 expression is inversely related to T-cell effector gene expression in non-small-cell lung cancer. J Exp Clin Cancer Res 38:462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Mofers A, Pellegrini P, Linder S, D’Arcy P (2017) Proteasome-associated deubiquitinases and cancer. Cancer Metastasis Rev 36:635–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hattori A, Tsujimoto M (2013) Endoplasmic reticulum aminopeptidases: biochemistry, physiology and pathology. J Biochem 154:219–228

    Article  CAS  PubMed  Google Scholar 

  38. Serwold T, Gonzalez F, Kim J, Jacob R, Shastri N (2002) ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 419:480–483

    Article  CAS  PubMed  Google Scholar 

  39. York IA, Chang SC, Saric T, Keys JA, Favreau JM, Goldberg AL et al (2002) The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8–9 residues. Nat Immunol 3:1177–1184

    Article  CAS  PubMed  Google Scholar 

  40. Saric T, Chang SC, Hattori A, York IA, Markant S, Rock KL et al (2002) An IFN-gamma-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nat Immunol 3:1169–1176

    Article  CAS  PubMed  Google Scholar 

  41. Stratikos E, Stamogiannos A, Zervoudi E, Fruci D (2014) A role for naturally occurring alleles of endoplasmic reticulum aminopeptidases in tumor immunity and cancer pre-disposition. Front Oncol 4:363

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pedersen MH, Hood BL, Beck HC, Conrads TP, Ditzel HJ, Leth-Larsen R (2017) Downregulation of antigen presentation-associated pathway proteins is linked to poor outcome in triple-negative breast cancer patient tumors. Oncoimmunology 6:e1305531

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mehta AM, Jordanova ES, Kenter GG, Ferrone S, Fleuren GJ (2008) Association of antigen processing machinery and HLA class I defects with clinicopathological outcome in cervical carcinoma. Cancer Immunol Immunother 57:197–206

    Article  CAS  PubMed  Google Scholar 

  44. Ayshamgul H, Ma H, Ilyar S, Zhang LW, Abulizi A (2011) Association of defective HLA-I expression with antigen processing machinery and their association with clinicopathological characteristics in Kazak patients with esophageal cancer. Chin Med J (Engl) 124:341–346

    Google Scholar 

  45. Schmidt K, Keller C, Kuhl AA, Textor A, Seifert U, Blankenstein T et al (2018) ERAP1-dependent antigen cross-presentation determines efficacy of adoptive T-cell therapy in mice. Cancer Res 78:3243–3254

    Article  CAS  PubMed  Google Scholar 

  46. Cho-Park PF, Steller H (2013) Proteasome regulation by ADP-ribosylation. Cell 153:614–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zaiss DM, Standera S, Holzhutter H, Kloetzel P, Sijts AJ (1999) The proteasome inhibitor PI31 competes with PA28 for binding to 20S proteasomes. FEBS Lett 457:333–338

    Article  CAS  PubMed  Google Scholar 

  48. McCutchen-Maloney SL, Matsuda K, Shimbara N, Binns DD, Tanaka K, Slaughter CA et al (2000) cDNA cloning, expression, and functional characterization of PI31, a proline-rich inhibitor of the proteasome. J Biol Chem 275:18557–18565

    Article  CAS  PubMed  Google Scholar 

  49. Micel LN, Tentler JJ, Smith PG, Eckhardt GS (2013) Role of ubiquitin ligases and the proteasome in oncogenesis: novel targets for anticancer therapies. J Clin Oncol 31:1231–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. D’Arcy P, Linder S (2014) Molecular pathways: translational potential of deubiquitinases as drug targets. Clin Cancer Res 20:3908–3914

    Article  CAS  PubMed  Google Scholar 

  51. Gardiner GJ, Deffit SN, McLetchie S, Perez L, Walline CC, Blum JS (2013) A role for NADPH oxidase in antigen presentation. Front Immunol 4:295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the participants of the PLCO Cancer Screening Trial. We also thank the National Cancer Institute for providing the access to the data collected by the PLCO trial. The statements contained herein are solely those of the authors and do not represent or imply concurrence or endorsement by National Cancer Institute. The authors would also like to acknowledge dbGaP repository for providing cancer genotyping datasets. The accession numbers for the datasets of lung cancer are phs000336.v1.p1 and phs000093.v2.p2. A list of contributing investigators and funding agencies for these studies can be found in Supplemental Data.

Funding

This work was supported by the National Institutes of Health (grant number: CA092824, 5U01CA209414, CA074386, CA090578, R01NS091307 and R56AG062302); the V Foundation for Cancer Research (grant number: D2017-19); the Duke Cancer Institute as part of the P30 Cancer Center Support Grant (Grant ID: NIH/NCI CA014236); the short-term international training program for PhD from Zhengzhou University, P.R. China.

Author information

Authors and Affiliations

Authors

Contributions

SY, DT, QW, QW contributed to the study conception and design. Material preparation, data collection, and analysis were performed by SY, DT, YCZ, HL, SL, TES, CG, LS, SS, DCC, QW, and QW. The first draft of the manuscript was written by SY and DT and critically reviewed and revised by QW and QW, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Qiming Wang or Qingyi Wei.

Ethics declarations

Conflicts of interest

The authors declare no potential conflicts of interest.

Availability of data and material

The PLCO dataset used for the analyses described in the present study was obtained from dbGaP (http://www.ncbi.nlm.nih.gov/gap) through dbGaP accession number phs000336.v1.p1 and phs000093.v2.p2. The HLCS dataset used for the replication will be made available upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Tang, D., Zhao, Y.C. et al. Potentially functional variants of ERAP1, PSMF1 and NCF2 in the MHC-I-related pathway predict non-small cell lung cancer survival. Cancer Immunol Immunother 70, 2819–2833 (2021). https://doi.org/10.1007/s00262-021-02877-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-02877-9

Keywords

Navigation