Skip to main content

Advertisement

Log in

Identification and validation of tumor environment phenotypes in lung adenocarcinoma by integrative genome-scale analysis

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Purpose

To comprehensively elucidate the landscape of the tumor environment (TME) of lung adenocarcinoma (LUAD), which has a profound impact on prognosis and response to immunotherapy.

Methods and materials

Using a large dataset of LUAD patients from The Cancer Genome Atlas, Gene Expression Omnibus database (GEO), and our institution (n = 1411), we estimated the infiltration pattern of 24 immune cell populations in each sample and systematically correlated the TME phenotypes with genomic traits and clinicopathologic characteristics.

Results

The LUAD microenvironment was classified into two distinct TME clusters (A and B), and a random forest classifier model was constructed. TMEcluster A was characterized by sparse distribution of immune cell infiltration, relatively low levels of immunomodulators and slightly higher mutation load. By contrast, enrichment of both cytotoxic T cells and immunosuppressor cells was observed in TMEcluster B. Moreover, several immune-related cytokines or markers including IFN-γ, TNF-β, and several immune checkpoint molecules such as PD-L1 were also upregulated in TMEcluster B. Multivariable Cox analysis revealed that the TMEcluster was an independent prognostic factor (TMEcluster B vs. A, hazard ratio = 0.68, 95% confidence interval = 0.50–0.91, p = 0.010). These findings were all externally validated in the data from the GEO database and our institution.

Conclusions

Our findings describe a comprehensive landscape of LUAD immune infiltration pattern and integrate several previously proposed biomarkers associated with distinct immunophenotypes, thus shedding light on how tumors interact with immune microenvironment. Our results may guide a more precise immune therapeutic strategy for LUAD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    PubMed  Google Scholar 

  2. Barta JA, Powell CA, Wisnivesky JP (2019) Global epidemiology of lung cancer. Ann Glob Health. 85(1):8. https://doi.org/10.5334/aogh.2419

    Article  PubMed  PubMed Central  Google Scholar 

  3. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A et al (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375(19):1823–1833

    Article  CAS  PubMed  Google Scholar 

  4. Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J et al (2016) Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. The Lancet 387(10030):1837–1846

    Article  CAS  Google Scholar 

  5. Gentzler R, Hall R, Kunk PR, Gaughan E, Dillon P, Slingluff CL et al (2016) Beyond melanoma: inhibiting the PD-1/PD-L1 pathway in solid tumors. Immunotherapy 8(5):583–600

    Article  CAS  PubMed  Google Scholar 

  6. Jia Q, Wu W, Wang Y, Alexander PB, Sun C, Gong Z et al (2018) Local mutational diversity drives intratumoral immune heterogeneity in non-small cell lung cancer. Nat Commun 9(1):5361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Herbst RS, Baas P, Kim D-W, Felip E, Pérez-Gracia JL, Han J-Y et al (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. The Lancet 387(10027):1540–1550

    Article  CAS  Google Scholar 

  8. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  11. Spranger S (2016) Mechanisms of tumor escape in the context of the T-cell-inflamed and the non-T-cell-inflamed tumor microenvironment. Int Immunol 28(8):383–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zeng D, Li M, Zhou R, Zhang J, Sun H, Shi M et al (2019) Tumor microenvironment characterization in gastric cancer identifies prognostic and immunotherapeutically relevant gene signatures. Cancer Immunol Res 7(5):737–750

    Article  CAS  PubMed  Google Scholar 

  13. Tamborero D, Rubio-Perez C, Muinos F, Sabarinathan R, Piulats JM, Muntasell A et al (2018) A pan-cancer landscape of interactions between solid tumors and infiltrating immune cell populations. Clin Cancer Res 24(15):3717–3728

    Article  CAS  PubMed  Google Scholar 

  14. Xiao Y, Ma D, Zhao S, Suo C, Shi J, Xue MZ et al (2019) Multi-omics profiling reveals distinct microenvironment characterization and suggests immune escape mechanisms of triple-negative breast cancer. Clin Cancer Res 25(16):5002–5014

    Article  PubMed  Google Scholar 

  15. Cai Y, Chang Y, Liu Y (2019) Multi-omics profiling reveals distinct microenvironment characterization of endometrial cancer. Biomed Pharmacother 118:109244

    Article  CAS  PubMed  Google Scholar 

  16. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y et al (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12(5):453–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF et al (2009) Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462(7269):108–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hänzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li Y, Ge D, Gu J, Xu F, Zhu Q, Lu C (2019) A large cohort study identifying a novel prognosis prediction model for lung adenocarcinoma through machine learning strategies. BMC Cancer 19(1):886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Yang X, Shi Y, Li M, Lu T, Xi J, Lin Z et al (2019) Identification and validation of an immune cell infiltrating score predicting survival in patients with lung adenocarcinoma. J Transl Med 17(1):217

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W et al (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucl Acids Res 43(7):e47

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC et al (2013) Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39(4):782–795

    Article  CAS  PubMed  Google Scholar 

  23. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P (2015) The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 1(6):417–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  25. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S et al (2016) Genomic and transcriptomic features of response to Anti-PD-1 therapy in metastatic melanoma. Cell 165(1):35–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wilke CM, Wei S, Wang L, Kryczek I, Kao J, Zou W (2011) Dual biological effects of the cytokines interleukin-10 and interferon-γ. Cancer Immunol Immunother 60(11):1529–1541

    Article  CAS  PubMed  Google Scholar 

  29. Bronte V, Murray PJ (2015) Understanding local macrophage phenotypes in disease: modulating macrophage function to treat cancer. Nat Med 21(2):117–119

    Article  CAS  PubMed  Google Scholar 

  30. Rooney Michael S, Shukla Sachet A, Wu Catherine J, Getz G, Hacohen N (2015) Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160(1–2):48–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. DuPage M, Cheung AF, Mazumdar C, Winslow MM, Bronson R, Schmidt LM et al (2011) Endogenous T cell responses to antigens expressed in lung adenocarcinomas delay malignant tumor progression. Cancer Cell 19(1):72–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331(6024):1565–1570

    Article  CAS  PubMed  Google Scholar 

  33. Viganò S, Perreau M, Pantaleo G, Harari A (2012) Positive and negative regulation of cellular immune responses in physiologic conditions and diseases. Clin Dev Immunol 2012:485781

    PubMed  PubMed Central  Google Scholar 

  34. Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT et al (2013) Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med. 5(200):200ra116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Bald T, Landsberg J, Lopez-Ramos D, Renn M, Glodde N, Jansen P et al (2014) Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation. Cancer Discov 4(6):674–687

    Article  CAS  PubMed  Google Scholar 

  36. Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH et al (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 20(19):5064–5074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M et al (2017) First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med 376(25):2415–2426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Spranger S, Luke JJ, Bao R, Zha Y, Hernandez KM, Li Y et al (2016) Density of immunogenic antigens does not explain the presence or absence of the T-cell-inflamed tumor microenvironment in melanoma. Proc Natl Acad Sci USA 113(48):E7759–E7768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Woo SR, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MY et al (2014) STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41(5):830–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Luksza M, Riaz N, Makarov V, Balachandran VP, Hellmann MD, Solovyov A et al (2017) A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature 551(7681):517–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Porta-Pardo E, Godzik A (2016) Mutation drivers of immunological responses to cancer. Cancer Immunol Res 4(9):789–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wellenstein MD, de Visser KE (2018) Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity 48(3):399–416

    Article  CAS  PubMed  Google Scholar 

  43. Koyama S, Akbay EA, Li YY, Aref AR, Skoulidis F, Herter-Sprie GS et al (2016) STK11/LKB1 deficiency promotes neutrophil recruitment and proinflammatory cytokine production to suppress T-cell activity in the lung tumor microenvironment. Cancer Res 76(5):999–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L et al (2015) Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science (New York, NY) 350(6257):207–211

    Article  CAS  Google Scholar 

  45. Snyder A, Nathanson T, Funt SA, Ahuja A, Buros Novik J, Hellmann MD et al (2017) Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: an exploratory multi-omic analysis. PLoS Med 14(5):e1002309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank International Science Editing (https://www.internationalscienceediting.com) for editing this manuscript.

Funding

This work was supported by the Science and Technology Commission of Shanghai Municipality under Grant [No. 17ZR1405200] and Zhengyi Scholar Foundation of School of Basic Medical Sciences, Fudan University under Grant [No. S22-11; https://basicmed.fudan.edu.cn/].

Author information

Authors and Affiliations

Authors

Contributions

Conception and Design were contributed by GB, ZC, XY, CZ, and HF. Collection and assembly of data were contributed by GB, ZC, and XY. Data analysis and interpretation were contributed by GB, ZC, and XY. Drafting of the manuscript was contributed by GB, ZC, and XY. Critical revision of the manuscript for important intellectual content was contributed by CZ and HF. Final approval of the manuscript and submission were contributed by GB, ZC, XY, JL, ZH, YB, QS, RL, YZ, YH, TL, CZ, and HF.

Corresponding authors

Correspondence to Cheng Zhan or Hong Fan.

Ethics declarations

Conflict of interest

The author reports no conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1.

A Overview of the study design. B Consensus matrixes of all GC cohorts for each k (k = 2–4), displaying the clustering stability using 1000 iterations of hierarchical clustering. C Correlation between the 24 types of TME immune cells in LUAD patients from TCGA. (PNG 4913 kb)

Supplementary Figure 2.

Principal components analysis performed on all the patients who have been classified into TME cluster A or B. The first two principal components demonstrated the distinct characteristic of the two clusters. Blue circle indicates patients in TMEcluster A, while red triangle indicates patients in TMEcluster B. (PNG 344 kb)

Supplementary Figure 3.

A The cnetplot showing the differentially expressed genes and corresponding enriched pathways in GO database. B, C Gene set enrichment analysis (GSEA) showing the significantly enriched pathways in TMEcluster B (B) and A (C). (PNG 17863 kb)

Supplementary Figure 4.

Heatmap showing published biological pathway signatures involved in cancer development and their differential activation pattern across the TME clusters by the use of ssGSEA. (PNG 4852 kb)

Supplementary Figure 5.

A The volcano plot showing the differentially expressed miRNAs across the TME clusters. B, C Details on the genomic alterations in TMEcluster A (B) and B (C). (PNG 2563 kb)

Supplementary Figure 6.

Immune microenvironment traits in the TME clusters in patients from GEO and our institution. A and E Violin plots showing the expression profiling of the immune-related genes in the POPLAR study and cytolytic activity (CYT) score defined by Rooney et al in patients from GEO (A) and our institution (E). The differences between every two groups were compared through the Wilcoxon test. p values indicated. B and F Relative expression level of molecules potentially involved in initiation of innate immunity (left) and MHC-I/II antigen-presenting process (right) in patients from GEO (B) and our institution (F). C and G Relative expression level of immune co-inhibitors (left) and co-stimulators (right) in patients from GEO (C) and our institution (G). D and H Violin plots showing the CD8+ T cells/Treg ratio in the two TME clusters in patients from GEO (D) and our institution (H). I, J The expression pattern of the four important immune checkpoint molecules in TMEcluster A and B in patients from GEO (I) and our institution (J). Within each group, the thick lines in the boxes represent the median value. The bottom and top of the boxes are the 25th and 75th percentiles (interquartile range). The whiskers encompass 1.5 times the interquartile range. The statistical difference of two TME clusters was compared through the Wilcoxon test. ****, p<0.0001. (PNG 3374 kb)

Supplementary material 7 (XLSX 15 kb)

Supplementary material 8 (XLSX 575 kb)

Supplementary material 9 (XLSX 10 kb)

Supplementary material 10 (XLSX 4488 kb)

Supplementary material 11 (XLSX 345 kb)

Supplementary material 12 (XLSX 844 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, G., Chen, Z., Yang, X. et al. Identification and validation of tumor environment phenotypes in lung adenocarcinoma by integrative genome-scale analysis. Cancer Immunol Immunother 69, 1293–1305 (2020). https://doi.org/10.1007/s00262-020-02546-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02546-3

Keywords

Navigation