Skip to main content

Advertisement

Log in

Regulatory T cells function at the early stage of tumor progression in a mouse model of tongue squamous cell carcinoma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The objective of this study was to observe the distribution of regulatory T cells (Tregs) in the development of tongue squamous cell carcinoma (SCC) and to determine the role of Tregs in the progression of tongue SCC. A mouse model of 4-nitroquinoline-1-oxide (4NQO)-induced-tongue SCC was established. The expression of Forkhead box P3 (Foxp3), interleukin 10, transforming growth factor-β, chemokine CC motif ligands 17, 20, and CC chemokine receptor 4 was determined using real-time quantitative polymerase chain reaction. Foxp3 expression was also analyzed using immunohistochemistry. The results were compared with those of control mice and of 4NQO-treated mice treated with a cyclooxygenase-2 (COX-2) inhibitor. Well to moderately differentiated tongue SCC was induced in all of the experimental mice. The amount of Tregs of the experimental mice was over 10 times as much as control mice at the early stage of tumor progression. COX-2 inhibitor did not prevent the progression of tongue SCC and did not reduce the total amount of Tregs. Tregs function at the early stage of the development of tongue SCC, and it may be effective to suppress Tregs at the early stage of tumor progression for the treatment and/or prevention of tongue SCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

4NQO:

4-nitroquinoline-1-oxide

CCL:

Chemokine CC motif ligand(s)

CCR:

CC chemokine receptor

CI:

Confidence interval(s)

PG:

Prostaglandin

PGE2:

Prostaglandin E2

RT-PCR:

Real-time quantitative polymerase chain reaction

SCC:

Squamous cell carcinoma

Th3:

T helper 3

Tr1(17):

Type 1(17) T regulatory

Tregs:

Regulatory T cells

References

  1. Roncarolo MG, Bacchetta R, Bordignon C, Narula S, Levings MK (2001) Type 1 T regulatory cells. Immunol Rev 182:68–79

    Article  CAS  PubMed  Google Scholar 

  2. Weiner HL (2001) Induction and mechanism of action of thransforming growth factor-beta-secreting Th3 reglatory cells. Immunol Rev 182:207–214

    Article  CAS  PubMed  Google Scholar 

  3. Shevach EM (2002) CD4 + CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2:389–400

    CAS  PubMed  Google Scholar 

  4. Larmonier N, Marron M, Zeng Y, Cantrell J, Romanoski A, Sepassi M, Thompson S, Chen X, Andreansky S, Katsanis E (2007) Tumor-derived CD4(+)CD25(+) regulatory T cell suppression of dendritic cell function involves TGF-beta and IL-10. Cancer Immunol Immunother 56:48–59

    Article  CAS  PubMed  Google Scholar 

  5. Yu P, Lee Y, Liu W, Krausz T, Chong A, Schreiber H, Fu YX (2005) Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. J Exp Med 201:779–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Gracia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    Article  CAS  PubMed  Google Scholar 

  7. Hiraoka N, Onozato K, Kosuge T, Hirohashi S (2006) Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 12:5423–5434

    Article  CAS  PubMed  Google Scholar 

  8. Katz SC, Bamboat ZM, Maker AV, Shia J, Pillarisetty VG, Yopp AC, Hedvat CV, Gonen M, Jarnagin WR, Fong Y, D’Angelica MI, DeMatteo RP (2013) Regulatory T cell infiltration predicts outcome following resection of colorectal cancer liver metastases. Ann Surg Oncol 20:946–955

    Article  PubMed  Google Scholar 

  9. Viguier M, Lemaitre F, Verola O, Cho MS, Gorochov G, Dubertret L, Bachelez H, Kourilsky P, Ferradini L (2004) Foxp3 expressing CD4+ CD25(high) regulatory T cells are overexpressed in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J Immunol 173:1444–1453

    Article  CAS  PubMed  Google Scholar 

  10. Bron L, Jandus C, Andrejevic-Blant S, Speiser DE, Monnier P, Romero P, Rivals JP (2012) Prognostic value of arginase-II expression and regulatory T-cell infiltration in head and neck squamous cell carcinoma. Int J Cancer 132:E85–E93

    Article  PubMed  Google Scholar 

  11. Badoual C, Hans S, Rodriguez J, Peyrard S, Klein C, Agueznay Nel H, Mosseri V, Laccourreye O, Bruneval P, Fridman WH, Brasnu DF, Tartour E (2006) Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin Cancer Res 12:465–472

    Article  CAS  PubMed  Google Scholar 

  12. Shang B, Liu Y, Jiang SJ, Liu Y (2015) Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep 5:15179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Albers AE, Ferris RL, Kim GG, Chikamatsu K, DeLeo AB, Whiteside TL (2005) Immune responses to p53 in patients with cancer: enrichment in tetramer+ p53 peptide-specific T cells and regulatory T cells at tumor sites. Cancer Immunol Immunother 54:1072–1081

    Article  CAS  PubMed  Google Scholar 

  14. Strauss L, Bergmann C, Szczepanski M, Gooding W, Johnson JT, Whiteside TL (2007) A unique subset of CD4+CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-β1 mediates suppression in the tumor microenvironment. Clin Cancer Res 13:4345–4354

    Article  CAS  PubMed  Google Scholar 

  15. Hanakawa H, Orita Y, Sato Y, Takeuchi M, Ohno K, Gion Y, Tsukahara K, Tamamura R, Ito T, Nagatsuka H, Nishizaki K, Yoshino T (2014) Regulatory T-cell infiltration in tongue squamous cell carcinoma. Acta Otolaryngol 134:859–864

    Article  CAS  PubMed  Google Scholar 

  16. Vitale-Cross L, Czerninski R, Amornphimoltham P, Patel V, Molinolo AA, Gutkind JS (2009) Chemical carcinogenesis models for evaluating molecular-targeted prevention and treatment of oral cancer. Cancer Prev Res (Phila) 2:419–422

    Article  CAS  Google Scholar 

  17. Tang XH, Knudsen B, Bemis D, Tickoo S, Gudas LJ (2004) Oral cavity and esophageal carcinogenesis modeled in carcinogen-treated mice. Clin Cancer Res 10:301–313

    Article  CAS  PubMed  Google Scholar 

  18. Crofford LJ (1997) COX-1 and COX-2 tissue expression: implications and predictions. J Rheumatol 24(Suppl 49):15–19

    Google Scholar 

  19. Hla T, Neilson K (1992) Human cyclooxygenase-2 cDNA. Proc Natl Acad Sci USA 89:7384–7388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baratelli F, Lin Y, Zhu L, Yang SC, Heuze-Vourc’h N, Zeng G, Reckamp K, Dohadwala M, Sharma S, Dubinett SM (2005) Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. J Immunol 175:1483–1490

    Article  CAS  PubMed  Google Scholar 

  21. Mahic M, Yaqub S, Johansson CC, Tasken K, Aandahl EM (2006) FOXP3 + CD4 + CD25+ adaptive regulatory T cells express cyclooxygenase-2 and suppress effector T cells by a prostaglandin E2-dependent mechanism. J Immunol 177:246–254

    Article  CAS  PubMed  Google Scholar 

  22. Sun DS, Zhaq MQ, Xia M, Li L, Jiang YH (2012) The correlation between tumor-infiltrating Foxp3+ regulatory T cells and cyclooxygenase-2 expression and their association with recurrence in resected head and neck cancers. Med Oncol 29:707–713

    Article  CAS  PubMed  Google Scholar 

  23. Yuan XL, Chen L, Li MX, Dong P, Xue J, Wang J, Zhang TT, Wang XA, Zhang FM, Ge HL, Shen LS, Xu D (2010) Elevated expression of Foxp3 in tumor-infiltrating Treg cells suppresses T-cell proliferation and contributes to gastric cancer progression in a COX-2-dependent manner. Clin Immunol 134:277–288

    Article  CAS  PubMed  Google Scholar 

  24. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    Article  CAS  PubMed  Google Scholar 

  25. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330

    Article  CAS  PubMed  Google Scholar 

  26. Nicholson IC, Mavrangelos C, Bird DR, Bresatz-Atkins S, Eastaff-Leung NG, Grose RH, Gundsambuu B, Hill D, Millard DJ, Sadlon TJ, To S, Zola H, Barry SC, Krumbiegel D (2012) PI16 is expressed by a subset of human memory Treg with enhanced migration to CCL17 and CCL20. Cell Immunol 275:12–18

    Article  CAS  PubMed  Google Scholar 

  27. Li J, Liang F, Yu D, Qing H, Yang Y (2013) Development of a 4-nitroquinoline-1-oxide model of lymph node metastasis in oral squamous cell carcinoma. Oral Oncol 49:299–305

    Article  PubMed  Google Scholar 

  28. Chu M, Su YX, Wang L, Zhang TH, Liang YJ, Liang LZ, Liao GQ (2012) Myeloid-derived suppressor cells contribute to oral cancer progression in 4NQO-treated mice. Oral Dis 18:67–73

    Article  CAS  PubMed  Google Scholar 

  29. Gasparoto TH, de Souza Malaspina TS, Benevides L, de Melo EJ, Jr Costa MR, Damante JH, Ikoma MR, Garlet GP, Cavassani KA, da Silva JS, Campanelli AP (2010) Patients with oral squamous cell carcinoma are characterized by increased frequency of suppressive regulatory T cells in the blood and tumor microenvironment. Cancer Immunol Immunother 59:819–828

    Article  CAS  PubMed  Google Scholar 

  30. Mannino MH, Zhu Z, Xiao H, Bai Q, Wakefield MR, Fang Y (2015) The paradoxical role of IL-10 in immunity and cancer. Cancer Lett 367:103–107

    Article  CAS  PubMed  Google Scholar 

  31. Massagué J, Blain SW, Lo RS (2000) TGF-beta signaling in growth control, cancer and heritable disorders. Cell 103:295–309

    Article  PubMed  Google Scholar 

  32. Han G, Wang XJ (2011) Roles of TGF-β signaling Smads in squamous cell carcinoma. Cell Biosci 1:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oshimori N, Oristian D, Fuchs E (2015) TGF-β promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell 160:963–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang YH, Wu MW, Yang AK, Zhang WD, Sun J, Liu TR, Chen YF (2011) COX-2 gene increases tongue cancer cell proliferation and invasion through VEGF-C pathway. Med Oncol 28(Suppl 1):S360–S366

    Article  PubMed  Google Scholar 

  35. Edelman MJ, Watson D, Wang X, Morrison C, Kratzke RA, Jewell S, Hodgson L, Mauer AM, Gajra A, Masters GA, Bedor M, Vokes EE, Green MJ (2008) Eicosanoid modulation in advanced lung cancer: cyclooxugenase-2 expression is a positive predictive factor for celecoxib + chemotherapy-Cancer and Leukemia Group B Trial 30203. J Clin Oncol 26:848–855

    Article  CAS  PubMed  Google Scholar 

  36. Iellem A, Mariani M, Lang R, Recalde H, Panina-Bordignon P, Sinigaglia F, D’Ambrosio D (2001) Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med 194:847–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li WM, Liu HR (2016) CCL20-CCR6 cytokine network facilitate Treg activity in advanced grades and metastatic variants of hepatocellular carcinoma. Scand J Immunol 83:33–37

    Article  CAS  PubMed  Google Scholar 

  38. Yu Q, Lou XM, He Y (2015) Preferential recruitment of Th17 cells to cervical cancer via CCR6-CCL20 pathway. PLoS One 10:e0120855

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kawai O, Ishii G, Kubota K, Murata Y, Naito Y, Mizuno T, Aokage K, Saijo N, Nishikawa Y, Gemma A, Kudoh S, Ochiai A (2008) Predominant infiltration of macrophages and CD8+ T cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. Cancer 113:1387–1395

    Article  CAS  PubMed  Google Scholar 

  40. Naito Y, Saito K, Shiiba K, Ohuchi A, Saigenji K, Nagura H, Ohtani H (1998) CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 58:3491–3494

    CAS  PubMed  Google Scholar 

  41. Schumacher K, Haensch W, Röefzaad C, Schlag PM (2001) Prognostic significance of activated CD8+ T cell infiltrations within esophageal carcinomas. Cancer Res 61:3932–3936

    CAS  PubMed  Google Scholar 

  42. Knoechel B, Lohr J, Kahn E, Bluestone JA, Abbas AK (2005) Sequential development of interleukin 2-dependent effector and regulatory T cells in response to endogenous systemic antigen. J Exp Med 202:1375–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research C from the Ministry of Education, Culture, Sports, Science and Technology, Japan [Grant No. 25462684 to Orita Y ] and by Wesco Scientific Promotion Foundation [to Orita Y].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yorihisa Orita.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miki, K., Orita, Y., Gion, Y. et al. Regulatory T cells function at the early stage of tumor progression in a mouse model of tongue squamous cell carcinoma. Cancer Immunol Immunother 65, 1401–1410 (2016). https://doi.org/10.1007/s00262-016-1902-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-016-1902-x

Keywords

Navigation