Skip to main content

Advertisement

Log in

Transcriptomic and Immunophenotypic Characterization of Tumor Immune Microenvironment in Squamous Cell Carcinoma of the Oral Tongue

  • Original Paper
  • Published:
Head and Neck Pathology Aims and scope Submit manuscript

Abstract

The tumor immune microenvironment of oral tongue squamous cell carcinoma may be accountable for differences in clinical behavior, particularly between different age groups. We performed RNA expression profiling and evaluated tumor infiltrating lymphocytes (TILs) and their T-cell subsets in order to assess the functional status of oral tongue squamous cell carcinoma tumor microenvironment and detect potentially clinically useful associations. Archival surgical pathology material from sixteen oral tongue squamous cell carcinoma patients was microscopically evaluated for TIL densities. RNA was extracted from macrodissected whole tumor sections and normal controls and RNA expression profiling was performed by the NanoString PanCancer IO 360 Gene Expression Panel. Immunostains for CD4, CD8 and FOXP3 were evaluated manually and by digital image analysis. Oral tongue squamous cell carcinomas had increased TIL densities, numerically dominated by CD4 + T cells, followed by CD8 + and FOXP3 + T cells. RNA expression profiling of tumors versus normal controls showed tumor signature upregulation in inhibitory immune signaling (CTLA4, TIGIT and PD-L2), followed by inhibitory tumor mechanisms (IDO1, TGF-β, B7-H3 and PD-L1). Patients older than 44 years showed a tumor microenvironment with increased Tregs and CTLA4 expression. Immunohistochemically assessed CD8% correlated well with molecular signatures related to CD8 + cytotoxic T-cell functions. FOXP3% correlated significantly with CTLA4 upregulation. CTLA4 molecular signature could be predicted by FOXP3% assessed by immunohistochemistry (R2 = 0.619, p = 0.026). Oral tongue squamous cell carcinoma hosts a complex inhibitory immune microenvironment, partially reflected in immunohistochemically quantified CD8 + and FOXP3 + T-cell subsets. Immunohistochemistry can be a useful screening tool for detecting tumors with upregulated expression of the targetable molecule CTLA4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HPV:

Human papillomavirus

TILs:

Tumor infiltrating lymphocytes

PD-L1:

Programmed death ligand 1

FOXP3:

Forkhead box P3

CTLA4:

Cytotoxic T lymphocyte-associated protein 4

TIGIT:

T cell immunoreceptor with Ig and ITIM domains

PD-L2:

Programmed death ligand 2

IDO1:

Indoleamine-pyrrole 2,3-dioxygenase 1

TGF-β:

Transforming growth factor beta

Tregs:

Regulatory T cells

PD-1:

Programmed cell death protein 1

References

  1. Patel SC, Carpenter WR, Tyree S, Couch ME, Weissler M, Hackman T, et al. Increasing incidence of oral tongue squamous cell carcinoma in young white women, age 18 to 44 years. J Clin Oncol. 2011;29:1488–94.

    PubMed  Google Scholar 

  2. van Dijk BA, Brands MT, Geurts SM, Merkx MA, Roodenburg JL. Trends in oral cavity cancer incidence, mortality, survival and treatment in the Netherlands. Int J Cancer. 2016;139:574–83.

    PubMed  Google Scholar 

  3. Ellington TD, Henley SJ, Senkomago V, O'Neil ME, Wilson RJ, Singh S, et al. Trends in incidence of cancers of the oral cavity and pharynx - United States 2007–2016. MMWR Morb Mortal Wkly Rep. 2020;69:433–8.

    PubMed  PubMed Central  Google Scholar 

  4. Nasser H, St John MA. The promise of immunotherapy in the treatment of young adults with oral tongue cancer. Laryngoscope Investig Otolaryngol. 2020;5:235–42.

    PubMed  PubMed Central  Google Scholar 

  5. Gamez ME, Kraus R, Hinni ML, Moore EJ, Ma DJ, Ko SJ, et al. Treatment outcomes of squamous cell carcinoma of the oral cavity in young adults. Oral Oncol. 2018;87:43–8.

    PubMed  Google Scholar 

  6. Gu X, Coates PJ, Boldrup L, Wang L, Krejci A, Hupp T, et al. Copy number variation: a prognostic marker for young patients with squamous cell carcinoma of the oral tongue. J Oral Pathol Med. 2019;48:24–30.

    CAS  PubMed  Google Scholar 

  7. Li R, Faden DL, Fakhry C, Langelier C, Jiao Y, Wang Y, et al. Clinical, genomic, and metagenomic characterization of oral tongue squamous cell carcinoma in patients who do not smoke. Head Neck. 2015;37:1642–9.

    PubMed  Google Scholar 

  8. Pickering CR, Zhang J, Neskey DM, Zhao M, Jasser SA, Wang J, et al. Squamous cell carcinoma of the oral tongue in young non-smokers is genomically similar to tumors in older smokers. Clin Cancer Res. 2014;20:3842–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Heikkinen I, Bello IO, Wahab A, Hagstrom J, Haglund C, Coletta RD, et al. Assessment of tumor-infiltrating lymphocytes predicts the behavior of early-stage oral tongue cancer. Am J Surg Pathol. 2019;43:1392–6.

    PubMed  Google Scholar 

  10. Hadler-Olsen E, Wirsing AM. Tissue-infiltrating immune cells as prognostic markers in oral squamous cell carcinoma: a systematic review and meta-analysis. Br J Cancer. 2019;120:714–27.

    PubMed  PubMed Central  Google Scholar 

  11. Hanna GJ, Woo SB, Li YY, Barletta JA, Hammerman PS, Lorch JH. Tumor PD-L1 expression is associated with improved survival and lower recurrence risk in young women with oral cavity squamous cell carcinoma. Int J Oral Maxillofac Surg. 2018;47:568–77.

    CAS  PubMed  Google Scholar 

  12. Lenouvel D, Gonzales-Moles MA, Ruiz-Avila I, Chamorro-Santos C, Gonzalez-Ruiz L, Gonzalez-Ruiz I, et al. Clinicopathological and prognostic significance of PD-L1 in oral cancer: a preliminary retrospective immunohistochemistry study. Oral Dis. 2020. https://doi.org/10.1111/odi.13509.

    Article  PubMed  Google Scholar 

  13. Vassilakopoulou M, Avgeris M, Velcheti V, Kotoula V, Rampias T, Chatzopoulos K, et al. Evaluation of PD-L1 expression and associated tumor-infiltrating lymphocytes in laryngeal squamous cell carcinoma. Clin Cancer Res. 2016;22:704–13.

    CAS  PubMed  Google Scholar 

  14. Meehan K, Leslie C, Lucas M, Jacques A, Mirzai B, Lim J, et al. Characterization of the immune profile of oral tongue squamous cell carcinomas with advancing disease. Cancer Med. 2020. https://doi.org/10.1002/cam4.3106.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rosai J. Why microscopy will remain a cornerstone of surgical pathology. Lab Invest. 2007;87:403–8.

    PubMed  Google Scholar 

  16. Hendry S, Salgado R, Gevaert T, Russell PA, John T, Thapa B, et al. Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the International Immunooncology Biomarkers Working Group: Part 1: assessing the host immune response, TILs in invasive breast carcinoma and ductal carcinoma in situ, metastatic tumor deposits and areas for further research. Adv Anat Pathol. 2017;24:235–51.

    PubMed  PubMed Central  Google Scholar 

  17. Dieci MV, Radosevic-Robin N, Fineberg S, van den Eynden G, Ternes N, Penault-Llorca F, et al. Update on tumor-infiltrating lymphocytes (TILs) in breast cancer, including recommendations to assess TILs in residual disease after neoadjuvant therapy and in carcinoma in situ: a report of the International Immuno-Oncology Biomarker Working Group on Breast Cancer. Semin Cancer Biol. 2018;52:16–25.

    PubMed  Google Scholar 

  18. Danaher P, Warren S, Lu R, Samayoa J, Sullivan A, Pekker I, et al. Pan-cancer adaptive immune resistance as defined by the Tumor Inflammation Signature (TIS): results from The Cancer Genome Atlas (TCGA). J Immunother Cancer. 2018;6:63.

    PubMed  PubMed Central  Google Scholar 

  19. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

    PubMed  PubMed Central  Google Scholar 

  20. Kulangara K, Zhang N, Corigliano E, Guerrero L, Waldroup S, Jaiswal D, et al. Clinical utility of the combined positive score for programmed death ligand-1 expression and the approval of pembrolizumab for treatment of gastric cancer. Arch Pathol Lab Med. 2019;143:330–7.

    CAS  PubMed  Google Scholar 

  21. Bankhead P, Loughrey MB, Fernandez JA, Dombrowski Y, McArt DG, Dunne PD, et al. QuPath: open source software for digital pathology image analysis. Sci Rep. 2017;7:16878.

    PubMed  PubMed Central  Google Scholar 

  22. Berben L, Wildiers H, Marcelis L, Antoranz Martinez A, Bosisio F, Hatse S, et al. Computerized scoring protocol for identification and quantification of different immune cell populations in breast tumor regions using QuPath software. Histopathology. 2020. https://doi.org/10.1111/his.14108.

    Article  PubMed  Google Scholar 

  23. Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6:65–70.

    Google Scholar 

  24. Lydiatt WM, Patel SG, O’Sullivan B, Brandwein MS, Ridge JA, Migliacci JC, et al. Head and Neck cancers-major changes in the American Joint Committee on cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67:122–37.

    PubMed  Google Scholar 

  25. Lee HJ, Kim JY, Park IA, Song IH, Yu JH, Ahn JH, et al. Prognostic significance of tumor-infiltrating lymphocytes and the tertiary lymphoid structures in HER2-positive breast cancer treated with adjuvant Trastuzumab. Am J Clin Pathol. 2015;144:278–88.

    CAS  PubMed  Google Scholar 

  26. Wang L, Simons DL, Lu X, Tu TY, Solomon S, Wang R, et al. Connecting blood and intratumoral Treg cell activity in predicting future relapse in breast cancer. Nat Immunol. 2019;20:1220–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Li C, Jiang P, Wei S, Xu X, Wang J. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol Cancer. 2020;19:116.

    PubMed  PubMed Central  Google Scholar 

  28. Sawant DV, Yano H, Chikina M, Zhang Q, Liao M, Liu C, et al. Adaptive plasticity of IL-10+ and IL-35 + T reg cells cooperatively promotes tumor T cell exhaustion. Nat Immunol. 2019;20:724–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Germain RN. T-cell development and the CD4-CD8 lineage decision. Nat Rev Immunol. 2002;2:309–22.

    CAS  PubMed  Google Scholar 

  30. Taniuchi I. CD4 helper and CD8 cytotoxic T cell differentiation. Annu Rev Immunol. 2018;36:579–601.

    CAS  PubMed  Google Scholar 

  31. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4:330–6.

    CAS  PubMed  Google Scholar 

  32. Boussiotis VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med. 2016;375:1767–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Akbay EA, Koyama S, Carretero J, Altabef A, Tchaicha JH, Christensen CL, et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 2013;3:1355–63.

    CAS  PubMed  Google Scholar 

  34. Chen J, Jiang CC, Jin L, Zhang XD. Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol. 2016;27:409–16.

    CAS  PubMed  Google Scholar 

  35. Fang W, Zhang J, Hong S, Zhan J, Chen N, Qin T, et al. EBV-driven LMP1 and IFN-γ up-regulate PD-L1 in nasopharyngeal carcinoma: implications for oncotargeted therapy. Oncotarget. 2015;5:12189–202.

    Google Scholar 

  36. Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN, et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun. 2015;6:6692.

    CAS  PubMed  Google Scholar 

  37. Satgunaseelan L, Gupta R, Madore J, Chia N, Lum T, Palme CE, et al. Programmed cell death-ligand 1 expression in oral squamous cell carcinoma is associated with an inflammatory phenotype. Pathology. 2016;48:574–80.

    CAS  PubMed  Google Scholar 

  38. Stasikowska-Kanicka O, Wagrowska-Danilewicz M, Danilewicz M. Immunohistochemical analysis of Foxp3(+), CD4(+), CD8(+) cell infiltrates and PD-L1 in oral squamous cell carcinoma. Pathol Oncol Res. 2018;24:497–505.

    CAS  PubMed  Google Scholar 

  39. Wang L, Pino-Lagos K, de Vries VC, Guleria I, Sayegh MH, Noelle RJ. Programmed death 1 ligand signaling regulates the generation of adaptive Foxp3+CD4+ regulatory T cells. Proc Natl Acad Sci USA. 2008;105:9331–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mattox AK, Lee J, Westra WH, Pierce RH, Ghossein R, Faquin WC, et al. PD-1 expression in head and neck squamous cell carcinomas derives primarily from functionally anergic CD4+ TILs in the presence of PD-L1 + TAMs. Cancer Res. 2017;77:6365–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Suarez-Sanchez FJ, Lequerica-Fernandez P, Suarez-Canto J, Rodrigo JP, Rodriguez-Santamarta T, Dominguez-Iglesias F, et al. Macrophages in oral carcinomas: relationship with Cancer Stem Cell Markers and PD-L1 Expression. Cancers (Basel). 2020;12:1764.

    CAS  Google Scholar 

  42. Yoshida S, Nagatsuka H, Nakano K, Kogashiwa Y, Ebihara Y, Yano M, et al. Significance of PD-L1 expression in tongue cancer development. Int J Med Sci. 2018;15:1723–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wilms T, Gu X, Boldrup L, Coates PJ, Fahraeus R, Wang L, et al. PD-L1 in squamous cell carcinoma of the oral tongue shows gender-specific association with prognosis. Oral Dis. 2020. https://doi.org/10.1111/odi.13414.

    Article  PubMed  Google Scholar 

  44. Ryu HJ, Kim EK, Cho BC, Yoon SO. Characterization of head and neck squamous cell carcinoma arising in young patients: particular focus on molecular alteration and tumor immunity. Head Neck. 2019;41:198–207.

    PubMed  Google Scholar 

  45. Naruse T, Yanamoto S, Okuyama K, Ohmori K, Tsuchihashi H, Furukawa K, et al. Immunohistochemical study of PD-1/PD-L1 axis expression in oral tongue squamous cell carcinomas: effect of neoadjuvant chemotherapy on local recurrence. Pathol Oncol Res. 2020;26:735–42.

    CAS  PubMed  Google Scholar 

  46. Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol. 2005;5:375–86.

    CAS  PubMed  Google Scholar 

  47. Schoenborn JR, Wilson CB. Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol. 2007;96:41–101.

    CAS  PubMed  Google Scholar 

  48. Brunet JF, Denizot F, Luciani MF, Roux-Dosseto M, Suzan M, Mattei MG, et al. A new member of the immunoglobulin superfamily–CTLA-4. Nature. 1987;328:267–70.

    CAS  PubMed  Google Scholar 

  49. Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994;1:405–13.

    CAS  PubMed  Google Scholar 

  50. O'Higgins C, Ward FJ, Abu ER. Deciphering the role of regulatory CD4 T cells in oral and oropharyngeal cancer: a systematic review. Front Oncol. 2018;8:442.

    PubMed  PubMed Central  Google Scholar 

  51. Larkin J, Hodi FS, Wolchok JD. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:1270–1.

    PubMed  Google Scholar 

  52. Forster MD, Devlin MJ. Immune checkpoint inhibition in head and neck cancer. Front Oncol. 2018;8:310.

    PubMed  PubMed Central  Google Scholar 

  53. Maroun CA, Zhu G, Fakhry C, Gourin CG, Seiwert TY, Vosler PS, et al. An immunogenomic investigation of oral cavity squamous cell carcinoma in patients aged 45 years and younger. Laryngoscope. 2020. https://doi.org/10.1002/lary.28674.

    Article  PubMed  Google Scholar 

  54. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med. 2000;342:1350–8.

    CAS  PubMed  Google Scholar 

  55. Li MO, Flavell RA. TGF-beta: a master of all T cell trades. Cell. 2008;134:392–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Garrido F, Aptsiauri N, Doorduijn EM, Garcia Lora AM, van Hall T. The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr Opin Immunol. 2016;39:44–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Beavis PA, Henderson MA, Giuffrida L, Davenport AJ, Petley EV, House IG, et al. Dual PD-1 and CTLA-4 checkpoint blockade promotes antitumor immune responses through CD4+ Foxp3 - cell-mediated modulation of CD103 + dendritic cells. Cancer Immunol Res. 2018;6:1069–81.

    CAS  PubMed  Google Scholar 

  58. Bradburn MJ, Clark TG, Love SB, Altman DG. Survival analysis Part III: multivariate data analysis – choosing a model and assessing its adequacy and fit. Br J Cancer. 2003;89:605–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Munn DH, Mellor AL. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 2013;34:137–43.

    CAS  PubMed  Google Scholar 

  60. Foy JP, Bertolus C, Michallet MC, Deneuve S, Incitti R, Bendriss-Vermare N, et al. The immune microenvironment of HPV-negative oral squamous cell carcinoma from never-smokers and never-drinkers patients suggests higher clinical benefit of IDO1 and PD1/PD-L1 blockade. Ann Oncol. 2017;28:1934–41.

    PubMed  Google Scholar 

  61. Mitchell TC, Hamid O, Smith DC, Bauer TM, Wasser JS, Olszanski AJ, et al. Epacadostat plus pembrolizumab in patients with advanced solid tumors: phase I results from a multicenter, open-label phase I/II trial (ECHO-202/KEYNOTE-037). J Clin Oncol. 2018;36:3223–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B, et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol. 2009;10:48–57.

    CAS  PubMed  Google Scholar 

  63. Mei Z, Huang J, Qiao B, King-Yin LA. Immune checkpoint pathways in immunotherapy for head and neck squamous cell carcinoma. Int J Oral Sci. 2020;12:16.

    PubMed  PubMed Central  Google Scholar 

  64. Lecerf C, Kamal M, Vacher S, Chemlali W, Schnitzler A, Morel C, et al. Immune gene expression in head and neck squamous cell carcinoma patients. Eur J Cancer. 2019;121:210–23.

    CAS  PubMed  Google Scholar 

  65. Wu L, Mao L, Liu JF, Chen L, Yu GT, Yang LL, et al. Blockade of TIGIT/CD155 signaling reverses T-cell exhaustion and enhances antitumor capability in head and neck squamous cell carcinoma. Cancer Immunol Res. 2019;7:1700–13.

    CAS  PubMed  Google Scholar 

  66. Yearley JH, Gibson C, Yu N, Moon C, Murphy E, Juco J, et al. PD-L2 Expression in human tumors: relevance to anti-PD-1 therapy in cancer. Clin Cancer Res. 2017;23:3158–67.

    CAS  PubMed  Google Scholar 

  67. Hamanaka RB, Chandel NS. Targeting glucose metabolism for cancer therapy. J Exp Med. 2012;209:211–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Nakazato K, Mogushi K, Kayamori K, Tsuchiya M, Takahashi KI, Sumino J, et al. Glucose metabolism changes during the development and progression of oral tongue squamous cell carcinomas. Oncol Lett. 2019;18:1372–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Cimpean AM, Raica M. Lymphangiogenesis and inflammation-looking for the "Missing Pieces" of the puzzle. Arch Immunol Ther Exp (Warsz). 2015;63:415–26.

    CAS  Google Scholar 

  70. Bulfone-Paus S, Bahri R. Mast cells as regulators of T cell responses. Front Immunol. 2015;6:394.

    PubMed  PubMed Central  Google Scholar 

  71. Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S. Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci USA. 2008;105:10113–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Attramadal CG, Kumar S, Gao J, Boysen ME, Halstensen TS, Bryne M. Low mast cell density predicts poor prognosis in oral squamous cell carcinoma and reduces survival in head and neck squamous cell Carcinoma. Anticancer Res. 2016;36:5499–506.

    CAS  PubMed  Google Scholar 

  73. Mohan M, Jagannathan N. Oral field cancerization: an update on current concepts. Oncol Rev. 2014;8:244.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Administrative Support: The authors would like to thank Mayo Clinic Research and Innovation Office for the exceptional administrative support. Expert Opinion: The authors thank Dr. Michael Rivera, M.D. for his expert opinion on immunohistochemistry interpretation.

Funding

Mayo Clinic Institutional Research Funds. The funders had no role in designing the study, collecting and analyzing the data, drafting the manuscript or making the decision to publish.

Author information

Authors and Affiliations

Authors

Contributions

KC—Conceptualized part of the study, collected and reviewed histologic material, interpreted immunohistochemical studies and results and wrote the manuscript. SS—Reviewed histologic material, immunohistochemical slides, performed the digital image analysis, reviewed and critically edited the manuscript. ARC—Collected and reviewed histologic material, interpreted results, reviewed and critically edited the manuscript. PK—Offered technical advice and performed part of the statistical analysis. AS—Collected histologic material, reviewed and critically edited the manuscript. XC—Performed bioinformatics analysis. Reviewed and critically edited the manuscript. KK—Offered advice on methods, interpreted part of the results, reviewed and critically edited the manuscript. MLH—Collected clinical information. Reviewed and critically edited the manuscript. CAR—Performed nucleic acid extraction, the technical part of RNA profiling and quality assurance. Reviewed and critically edited the manuscript. MAZ—Collected histologic material, reviewed and critically edited the manuscript. SHP—Conceptualized, designed and overviewed the study. Interpreted results, reviewed and critically edited the manuscript. JJG—Conceptualized, designed and overviewed the study. Interpreted results, reviewed and critically edited the manuscript.

Corresponding author

Correspondence to Joaquin J. Garcia.

Ethics declarations

Conflict of interest

No conflict of interest to disclose.

Ethical Approval

The study was approved by the Mayo Clinic Institutional Review Board (Application Number 18-002756).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatzopoulos, K., Sotiriou, S., Collins, A.R. et al. Transcriptomic and Immunophenotypic Characterization of Tumor Immune Microenvironment in Squamous Cell Carcinoma of the Oral Tongue. Head and Neck Pathol 15, 509–522 (2021). https://doi.org/10.1007/s12105-020-01229-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12105-020-01229-w

Keywords

Navigation