Skip to main content

Advertisement

Log in

Targeting tumor vasculature: expanding the potential of DNA cancer vaccines

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Targeting the tumor vasculature with anti-angiogenesis modalities is a bona fide validated approach that has complemented cancer treatment paradigms. Tumor vasculature antigens (TVA) can be immunologically targeted and offers multiple theoretical advantages that may enhance existing strategies against cancer. We focused on tumor endothelial marker 1 (TEM1/CD248) as a model TVA since it is broadly expressed on many different cancers. Our DNA-based vaccine approach demonstrated that CD248 can be effectively targeted immunologically; anti-tumor responses were generated in several mouse models; and CD8+/CD4+ T cell responses were elicited against peptides derived from CD248 protein. Our work supports our contention that CD248 is a novel immunotherapeutic target for cancer treatment and highlights the efficient, safe and translatable use of DNA-based immunotherapy. We next briefly highlight ongoing investigations targeting CD248 with antibodies as a diagnostic imaging agent and as a therapeutic antibody in an early clinical trial. The optimal approach for generating effective DNA-based cancer vaccines for several tumor types may be a combinatorial approach that enhances immunogenicity such as combination with chemotherapy. Additional combination approaches are discussed and include those that alleviate the immunosuppressive tumor microenvironment induced by myeloid-derived suppressor cells and T regulatory cells. Targeting the tumor vasculature by CD248-based immunological modalities expands the armamentarium against cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACT:

Adoptive cell therapy

ALL:

Acute lymphocytic leukemia

APC:

Antigen-presenting cells

bFGF:

Basic fibroblast growth factor

CAIX:

Carbonic anhydrase IX

CAR:

Chimeric antigen receptor

CLL:

Chronic lymphocytic leukemia

CTL:

Cytotoxic T lymphocytes

CXCL:

Chemokine (C-X-C motif) ligand

DC:

Dendritic cells

E2:

17β-estradiol

EC:

Endothelial cells

EPC:

Endothelial progenitor cells

G-CSF:

Granulocyte colony-stimulating factor

HGF:

Hepatocyte growth factor

IFN:

Interferon

IL:

Interleukin

IMG:

Intussusceptive microvascular growth

MDSC:

Myeloid-derived suppressor cells

MHC:

Major histocompatibility complex

MMP:

Matrix metalloproteinases

PDGF:

Platelet-derived growth factor

scFv:

Single-chain antibody

TAA:

Tumor-associated antigen

TCR:

T cell receptor

TEM:

Tumor endothelial marker

TGF:

Transforming growth factor

TNF:

Tumor necrosis factor

Treg:

T regulatory lymphocytes

TT:

Tetanus toxoid

TVA:

Tumor vasculature antigen

VDA:

Vascular-disrupting agents

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptor

References

  1. Chung AS, Lee J, Ferrara N (2010) Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer 10(7):505–514

    Article  CAS  PubMed  Google Scholar 

  2. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438(7070):967–974

    Article  CAS  PubMed  Google Scholar 

  3. Walsh DA (2007) Pathophysiological mechanisms of angiogenesis. Adv Clin Chem 44:187–221

    Article  CAS  PubMed  Google Scholar 

  4. Dvorak HF (2002) Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 20(21):4368–4380

    Article  CAS  PubMed  Google Scholar 

  5. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25(4):581–611

    Article  CAS  PubMed  Google Scholar 

  6. Spannuth WA, Sood AK, Coleman RL (2008) Angiogenesis as a strategic target for ovarian cancer therapy. Nat Clin Pract Oncol 5(4):194–204

    Article  CAS  PubMed  Google Scholar 

  7. Thorpe PE (2004) Vascular targeting agents as cancer therapeutics. Clin Cancer Res 10(2):415–427

    Article  PubMed  Google Scholar 

  8. Subbiah IM, Lenihan DJ, Tsimberidou AM (2011) Cardiovascular toxicity profiles of vascular-disrupting agents. Oncologist 16(8):1120–1130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buque A, Senovilla L, Baracco EE et al (2014) Classification of current anticancer immunotherapies. Oncotarget 5(24):12472–12508

    PubMed Central  PubMed  Google Scholar 

  10. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Klemm F, Joyce JA (2015) Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol 25(4):198–213

    Article  PubMed  Google Scholar 

  12. Junttila MR, de Sauvage FJ (2013) Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501(7467):346–354

    Article  CAS  PubMed  Google Scholar 

  13. St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW (2000) Genes expressed in human tumor endothelium. Science 289(5482):1197–1202

    Article  CAS  PubMed  Google Scholar 

  14. Carson-Walter EB, Watkins DN, Nanda A, Vogelstein B, Kinzler KW, St Croix B (2001) Cell surface tumor endothelial markers are conserved in mice and humans. Cancer Res 61(18):6649–6655

    CAS  PubMed  Google Scholar 

  15. Rettig WJ, Garin-Chesa P, Healey JH, Su SL, Jaffe EA, Old LJ (1992) Identification of endosialin, a cell surface glycoprotein of vascular endothelial cells in human cancer. Proc Natl Acad Sci USA 89(22):10832–10836

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Rmali KA, Puntis MC, Jiang WG (2005) Prognostic values of tumor endothelial markers in patients with colorectal cancer. World J Gastroenterol 11(9):1283–1286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Rouleau C, Curiel M, Weber W, Smale R, Kurtzberg L, Mascarello J, Berger C, Wallar G, Bagley R, Honma N, Hasegawa K, Ishida I, Kataoka S, Thurberg BL, Mehraein K, Horten B, Miller G, Teicher BA (2008) Endosialin protein expression and therapeutic target potential in human solid tumors: sarcoma versus carcinoma. Clin Cancer Res 14(22):7223–7236

    Article  CAS  PubMed  Google Scholar 

  18. Carson-Walter EB, Winans BN, Whiteman MC, Liu Y, Jarvela S, Haapasalo H, Tyler BM, Huso DL, Johnson MD, Walter KA (2009) Characterization of TEM1/endosialin in human and murine brain tumors. BMC Cancer 9:417

    Article  PubMed Central  PubMed  Google Scholar 

  19. MacFadyen J, Savage K, Wienke D, Isacke CM (2007) Endosialin is expressed on stromal fibroblasts and CNS pericytes in mouse embryos and is downregulated during development. Gene Expr Patterns 7(3):363–369

    Article  CAS  PubMed  Google Scholar 

  20. MacFadyen JR, Haworth O, Roberston D, Hardie D, Webster MT, Morris HR, Panico M, Sutton-Smith M, Dell A, van der Geer P, Wienke D, Buckley CD, Isacke CM (2005) Endosialin (TEM1, CD248) is a marker of stromal fibroblasts and is not selectively expressed on tumour endothelium. FEBS Lett 579(12):2569–2575

    Article  CAS  PubMed  Google Scholar 

  21. Christian S, Ahorn H, Koehler A, Eisenhaber F, Rodi HP, Garin-Chesa P, Park JE, Rettig WJ, Lenter MC (2001) Molecular cloning and characterization of endosialin, a C-type lectin-like cell surface receptor of tumor endothelium. J Biol Chem 276(10):7408–7414

    Article  CAS  PubMed  Google Scholar 

  22. Christian S, Winkler R, Helfrich I, Boos AM, Besemfelder E, Schadendorf D, Augustin HG (2008) Endosialin (Tem1) is a marker of tumor-associated myofibroblasts and tumor vessel-associated mural cells. Am J Pathol 172(2):486–494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Bagley RG, Rouleau C, St Martin T, Boutin P, Weber W, Ruzek M, Honma N, Nacht M, Shankara S, Kataoka S, Ishida I, Roberts BL, Teicher BA (2008) Human endothelial precursor cells express tumor endothelial marker 1/endosialin/CD248. Mol Cancer Ther 7(8):2536–2546

    Article  CAS  PubMed  Google Scholar 

  24. Nanda A, Karim B, Peng Z, Liu G, Qiu W, Gan C, Vogelstein B, St Croix B, Kinzler KW, Huso DL (2006) Tumor endothelial marker 1 (Tem1) functions in the growth and progression of abdominal tumors. Proc Natl Acad Sci USA 103(9):3351–3356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Davies G, Cunnick GH, Mansel RE, Mason MD, Jiang WG (2004) Levels of expression of endothelial markers specific to tumour-associated endothelial cells and their correlation with prognosis in patients with breast cancer. Clin Exp Metastasis 21(1):31–37

    Article  CAS  PubMed  Google Scholar 

  26. Facciponte JG, Ugel S, De Sanctis F, Li C, Wang L, Nair G, Sehgal S, Raj A, Matthaiou E, Coukos G, Facciabene A (2014) Tumor endothelial marker 1-specific DNA vaccination targets tumor vasculature. J Clin Invest 124(4):1497–1511

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Rice J, Ottensmeier CH, Stevenson FK (2008) DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 8(2):108–120

    Article  CAS  PubMed  Google Scholar 

  28. Panina-Bordignon P, Tan A, Termijtelen A, Demotz S, Corradin G, Lanzavecchia A (1989) Universally immunogenic T cell epitopes: promiscuous binding to human MHC class II and promiscuous recognition by T cells. Eur J Immunol 19(12):2237–2242

    Article  CAS  PubMed  Google Scholar 

  29. Widera G, Austin M, Rabussay D, Goldbeck C, Barnett SW, Chen M, Leung L, Otten GR, Thudium K, Selby MJ, Ulmer JB (2000) Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J Immunol 164(9):4635–4640

    Article  CAS  PubMed  Google Scholar 

  30. Vanderlugt CL, Miller SD (2002) Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol 2(2):85–95

    Article  CAS  PubMed  Google Scholar 

  31. Huang AY, Gulden PH, Woods AS, Thomas MC, Tong CD, Wang W, Engelhard VH, Pasternack G, Cotter R, Hunt D, Pardoll DM, Jaffee EM (1996) The immunodominant major histocompatibility complex class I-restricted antigen of a murine colon tumor derives from an endogenous retroviral gene product. Proc Natl Acad Sci USA 93(18):9730–9735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. McWilliams JA, Sullivan RT, Jordan KR, McMahan RH, Kemmler CB, McDuffie M, Slansky JE (2008) Age-dependent tolerance to an endogenous tumor-associated antigen. Vaccine 26(15):1863–1873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Malarkannan S, Serwold T, Nguyen V, Sherman LA, Shastri N (1996) The mouse mammary tumor virus env gene is the source of a CD8+ T-cell-stimulating peptide presented by a major histocompatibility complex class I molecule in a murine thymoma. Proc Natl Acad Sci USA 93(24):13991–13996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Feltkamp MC, Smits HL, Vierboom MP, Minnaar RP, de Jongh BM, Drijfhout JW, ter Schegget J, Melief CJ, Kast WM (1993) Vaccination with cytotoxic T lymphocyte epitope-containing peptide protects against a tumor induced by human papillomavirus type 16-transformed cells. Eur J Immunol 23(9):2242–2249

    Article  CAS  PubMed  Google Scholar 

  35. Scappaticci FA, Fehrenbacher L, Cartwright T, Hainsworth JD, Heim W, Berlin J, Kabbinavar F, Novotny W, Sarkar S, Hurwitz H (2005) Surgical wound healing complications in metastatic colorectal cancer patients treated with bevacizumab. J Surg Oncol 91(3):173–180

    Article  CAS  PubMed  Google Scholar 

  36. Petrou P, Georgalas I, Giavaras G, Anastasiou E, Ntana Z, Petrou C (2010) Early loss of pregnancy after intravitreal bevacizumab injection. Acta Ophthalmol 88(4):e136

    Article  PubMed  Google Scholar 

  37. Mennuni C, Ugel S, Mori F, Cipriani B, Iezzi M, Pannellini T, Lazzaro D, Ciliberto G, La Monica N, Zanovello P, Bronte V, Scarselli E (2008) Preventive vaccination with telomerase controls tumor growth in genetically engineered and carcinogen-induced mouse models of cancer. Cancer Res 68(23):9865–9874

    Article  CAS  PubMed  Google Scholar 

  38. Ugel S, Scarselli E, Iezzi M, Mennuni C, Pannellini T, Calvaruso F, Cipriani B, De Palma R, Ricci-Vitiani L, Peranzoni E, Musiani P, Zanovello P, Bronte V (2010) Autoimmune B-cell lymphopenia after successful adoptive therapy with telomerase-specific T lymphocytes. Blood 115(7):1374–1384

    Article  CAS  PubMed  Google Scholar 

  39. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P (2012) Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 12(12):860–875

    Article  CAS  PubMed  Google Scholar 

  40. Stevenson FK, Rice J, Ottensmeier CH, Thirdborough SM, Zhu D (2004) DNA fusion gene vaccines against cancer: from the laboratory to the clinic. Immunol Rev 199:156–180

    Article  CAS  PubMed  Google Scholar 

  41. Fenoglio D, Traverso P, Parodi A, Kalli F, Zanetti M, Filaci G (2013) Generation of more effective cancer vaccines. Hum Vaccin Immunother 9(12):2543–2547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8(4):299–308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Gattinoni L, Powell DJ Jr, Rosenberg SA, Restifo NP (2006) Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 6(5):383–393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Zhao A, Nunez-Cruz S, Li C, Coukos G, Siegel DL, Scholler N (2011) Rapid isolation of high-affinity human antibodies against the tumor vascular marker Endosialin/TEM1, using a paired yeast-display/secretory scFv library platform. J Immunol Methods 363(2):221–232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Li C, Chacko AM, Hu J, Hasegawa K, Swails J, Grasso L, El-Deiry WS, Nicolaides N, Muzykantov VR, Divgi CR, Coukos G (2014) Antibody-based tumor vascular theranostics targeting endosialin/TEM1 in a new mouse tumor vascular model. Cancer Biol Ther 15(4):443–451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. André N, Carré M, Pasquier E (2014) Metronomics: Towards personalized chemotherapy? Nat Rev Clin Oncol 11(7):413–431

    Article  PubMed  Google Scholar 

  47. Chacko AM, Li C, Nayak M, Mikitsh JL, Hu J, Hou C, Grasso L, Nicolaides NC, Muzykantov VR, Divgi CR, Coukos G (2014) Development of 124I immuno-PET targeting tumor vascular TEM1/endosialin. J Nucl Med 55(3):500–507

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Diaz LA Jr, Coughlin CM, Weil SC, Fishel J, Gounder MM, Lawrence S, Azad N, O’Shannessy DJ, Grasso L, Wustner J, Ebel W, Carvajal RD (2015) A first-in-human phase I study of MORAb-004, a monoclonal antibody to endosialin in patients with advanced solid tumors. Clin Cancer Res 21(6):1281–1288

    Article  CAS  PubMed  Google Scholar 

  49. Chinnasamy D, Yu Z, Theoret MR, Zhao Y, Shrimali RK, Morgan RA, Feldman SA, Restifo NP, Rosenberg SA (2010) Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. J Clin Invest 120(11):3953–3968

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, Chew A, Gonzalez VE, Zheng Z, Lacey SF, Mahnke YD, Melenhorst JJ, Rheingold SR, Shen A, Teachey DT, Levine BL, June CH, Porter DL, Grupp SA (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371(16):1507–1517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Galluzzi L, Senovilla L, Zitvogel L, Kroemer G (2012) The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 11(3):215–233

    Article  CAS  PubMed  Google Scholar 

  52. Kang TH, Mao CP, Lee SY, Chen A, Lee JH, Kim TW, Alvarez RD, Roden RB, Pardoll D, Hung CF, Wu TC (2013) Chemotherapy acts as an adjuvant to convert the tumor microenvironment into a highly permissive state for vaccination-induced antitumor immunity. Cancer Res 73(8):2493–2504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Moserle L, Jimenez-Valerio G, Casanovas O (2014) Antiangiogenic therapies: going beyond their limits. Cancer Discov 4(1):31–41

    Article  CAS  PubMed  Google Scholar 

  54. Choi HJ, Armaiz Pena GN, Pradeep S, Cho MS, Coleman RL, Sood AK (2015) Anti-vascular therapies in ovarian cancer: moving beyond anti-VEGF approaches. Cancer Metastasis Rev 34(1):19–40

    Article  CAS  PubMed  Google Scholar 

  55. Kerbel RS, Yu J, Tran J, Man S, Viloria-Petit A, Klement G, Coomber BL, Rak J (2001) Possible mechanisms of acquired resistance to anti-angiogenic drugs: implications for the use of combination therapy approaches. Cancer Metastasis Rev 20(1–2):79–86

    Article  CAS  PubMed  Google Scholar 

  56. Huang J, Soffer SZ, Kim ES, McCrudden KW, New T, Manley CA, Middlesworth W, O’Toole K, Yamashiro DJ, Kandel JJ (2004) Vascular remodeling marks tumors that recur during chronic suppression of angiogenesis. Mol Cancer Res 2(1):36–42

    CAS  PubMed  Google Scholar 

  57. Ferrara N (2010) Role of myeloid cells in vascular endothelial growth factor-independent tumor angiogenesis. Curr Opin Hematol 17(3):219–224

    CAS  PubMed  Google Scholar 

  58. Shojaei F, Wu X, Zhong C, Yu L, Liang XH, Yao J, Blanchard D, Bais C, Peale FV, van Bruggen N, Ho C, Ross J, Tan M, Carano RA, Meng YG, Ferrara N (2007) Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450(7171):825–831

    Article  CAS  PubMed  Google Scholar 

  59. Ugel S, Delpozzo F, Desantis G, Papalini F, Simonato F, Sonda N, Zilio S, Bronte V (2009) Therapeutic targeting of myeloid-derived suppressor cells. Curr Opin Pharmacol 9(4):470–481

    Article  CAS  PubMed  Google Scholar 

  60. Giatromanolaki A, Bates GJ, Koukourakis MI, Sivridis E, Gatter KC, Harris AL, Banham AH (2008) The presence of tumor-infiltrating FOXP3+ lymphocytes correlates with intratumoral angiogenesis in endometrial cancer. Gynecol Oncol 110(2):216–221

    Article  CAS  PubMed  Google Scholar 

  61. Gupta S, Joshi K, Wig JD, Arora SK (2007) Intratumoral FOXP3 expression in infiltrating breast carcinoma: its association with clinicopathologic parameters and angiogenesis. Acta Oncol 46(6):792–797

    Article  CAS  PubMed  Google Scholar 

  62. Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang LP, Gimotty PA, Gilks CB, Lal P, Zhang L, Coukos G (2011) Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 475(7355):226–230

    Article  CAS  PubMed  Google Scholar 

  63. Talpur R, Jones DM, Alencar AJ, Apisarnthanarax N, Herne KL, Yang Y, Duvic M (2006) CD25 expression is correlated with histological grade and response to denileukin diftitox in cutaneous T-cell lymphoma. J Invest Dermatol 126(3):575–583

    Article  CAS  PubMed  Google Scholar 

  64. Naylor AJ, Azzam E, Smith S, Croft A, Poyser C, Duffield JS, Huso DL, Gay S, Ospelt C, Cooper MS, Isacke C, Goodyear SR, Rogers MJ, Buckley CD (2012) The mesenchymal stem cell marker CD248 (endosialin) is a negative regulator of bone formation in mice. Arthritis Rheum 64(10):3334–3343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support for A.F. is from the Basser Research Center for BRCA (Breast Cancer early onset) at Abramson Cancer Center, University of Pennsylvania; the Alliance for Cancer Gene Therapy, the National Institutes of Health (NIH) Director’s New Innovator Award (1DP2OD008514), and the Pennsylvania Department of Health (4100051725). The Italian Association for Cancer Research (AIRC) supported Stefano Ugel with Fellowship for studies abroad (2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Facciabene.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This paper is a Focussed Research Review based on a presentation given at the Fourteenth International Conference on Progress in Vaccination against Cancer (PIVAC 14), held in Rome, Italy, 24th–26th September, 2014. It is part of a Cancer Immunology, Immunotherapy series of Focussed Research Reviews and meeting report.

Stefano Ugel and John G. Facciponte have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ugel, S., Facciponte, J.G., De Sanctis, F. et al. Targeting tumor vasculature: expanding the potential of DNA cancer vaccines. Cancer Immunol Immunother 64, 1339–1348 (2015). https://doi.org/10.1007/s00262-015-1747-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-015-1747-8

Keywords

Navigation