Skip to main content

Advertisement

Log in

Anti-vascular therapies in ovarian cancer: moving beyond anti-VEGF approaches

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Resistance to chemotherapy is among the most important issues in the management of ovarian cancer. Unlike cancer cells, which are heterogeneous as a result of remarkable genetic instability, stromal cells are considered relatively homogeneous. Thus, targeting the tumor microenvironment is an attractive approach for cancer therapy. Arguably, anti-vascular endothelial growth factor (anti-VEGF) therapies hold great promise, but their efficacy has been modest, likely owing to redundant and complementary angiogenic pathways. Components of platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and other pathways may compensate for VEGF blockade and allow angiogenesis to occur despite anti-VEGF treatment. In addition, hypoxia induced by anti-angiogenesis therapy modifies signaling pathways in tumor and stromal cells, which induces resistance to therapy. Because of tumor cell heterogeneity and angiogenic pathway redundancy, combining cytotoxic and targeted therapies or combining therapies targeting different pathways can potentially overcome resistance. Although targeted therapy is showing promise, much more work is needed to maximize its impact, including the discovery of new targets and identification of individuals most likely to benefit from such therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, R., & Kaye, S. B. (2003). Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nature Reviews Cancer, 3, 502–516.

    Article  CAS  PubMed  Google Scholar 

  2. Balvert-Locht, H. R., Coebergh, J. W., Hop, W. C., et al. (1991). Improved prognosis of ovarian cancer in The Netherlands during the period 1975–1985: a registry-based study. Gynecologic Oncology, 42, 3–8.

    Article  CAS  PubMed  Google Scholar 

  3. Ozols, R. F., Bundy, B. N., Greer, B. E., et al. (2003). Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a gynecologic oncology group study. Journal of Clinical Oncology, 21, 3194–3200.

    Article  CAS  PubMed  Google Scholar 

  4. du Bois, A., Neijt, J. P., & Thigpen, J. T. (1999). First line chemotherapy with carboplatin plus paclitaxel in advanced ovarian cancer—a new standard of care? Annals of Oncology, 10(Suppl 1), 35–41.

    Article  PubMed  Google Scholar 

  5. Biagi, J. J., & Eisenhauer, E. A. (2003). Systemic treatment policies in ovarian cancer: the next 10 years. International Journal of Gynecological Cancer, 13(Suppl 2), 231–240.

    Article  PubMed  Google Scholar 

  6. Neijt, J. P., Engelholm, S. A., Tuxen, M. K., et al. (2000). Exploratory phase III study of paclitaxel and cisplatin versus paclitaxel and carboplatin in advanced ovarian cancer. Journal of Clinical Oncology, 18, 3084–3092.

    CAS  PubMed  Google Scholar 

  7. Greenlee, R. T., Hill-Harmon, M. B., Murray, T., & Thun, M. (2001). Cancer statistics, 2001. CA: A Cancer Journal for Clinicians, 51, 15–36.

    CAS  Google Scholar 

  8. Gore, M. E., Fryatt, I., Wiltshaw, E., & Dawson, T. (1990). Treatment of relapsed carcinoma of the ovary with cisplatin or carboplatin following initial treatment with these compounds. Gynecologic Oncology, 36, 207–211.

    Article  CAS  PubMed  Google Scholar 

  9. Wernert, N., Locherbach, C., Wellmann, A., Behrens, P., & Hugel, A. (2001). Presence of genetic alterations in microdissected stroma of human colon and breast cancers. Anticancer Research, 21, 2259–2264.

    CAS  PubMed  Google Scholar 

  10. Allinen, M., Beroukhim, R., Cai, L., et al. (2004). Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell, 6, 17–32.

    Article  CAS  PubMed  Google Scholar 

  11. Fukino, K., Shen, L., Patocs, A., Mutter, G. L., & Eng, C. (2007). Genomic instability within tumor stroma and clinicopathological characteristics of sporadic primary invasive breast carcinoma. JAMA, 297, 2103–2111.

    Article  CAS  PubMed  Google Scholar 

  12. Folkman, J. (1990). What is the evidence that tumors are angiogenesis dependent? Journal of the National Cancer Institute, 82, 4–6.

    Article  CAS  PubMed  Google Scholar 

  13. Eskander, R. N., & Randall, L. M. (2011). Bevacizumab in the treatment of ovarian cancer. Biologics, 5, 1–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ferrara, N., & Kerbel, R. S. (2005). Angiogenesis as a therapeutic target. Nature, 438, 967–974.

    Article  CAS  PubMed  Google Scholar 

  15. Konerding, M. A., Fait, E., & Gaumann, A. (2001). 3D microvascular architecture of pre-cancerous lesions and invasive carcinomas of the colon. British Journal of Cancer, 84, 1354–1362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Denekamp, J. (1982). Endothelial cell proliferation as a novel approach to targeting tumour therapy. British Journal of Cancer, 45, 136–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hinnen, P., & Eskens, F. A. (2007). Vascular disrupting agents in clinical development. British Journal of Cancer, 96, 1159–1165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Holwell, S. E., Cooper, P. A., Thompson, M. J., et al. (2002). Anti-tumor and anti-vascular effects of the novel tubulin-binding agent combretastatin A-1 phosphate. Anticancer Research, 22, 3933–3940.

    CAS  PubMed  Google Scholar 

  19. Tozer, G. M., Prise, V. E., Wilson, J., et al. (1999). Combretastatin A-4 phosphate as a tumor vascular-targeting agent: early effects in tumors and normal tissues. Cancer Research, 59, 1626–1634.

    CAS  PubMed  Google Scholar 

  20. Marysael, T., Ni, Y., Lerut, E., & de Witte, P. (2011). Influence of the vascular damaging agents DMXAA and ZD6126 on hypericin distribution and accumulation in RIF-1 tumors. Journal of Cancer Research and Clinical Oncology, 137, 1619–1627.

    Article  CAS  PubMed  Google Scholar 

  21. Nathan, P., Zweifel, M., Padhani, A. R., et al. (2012). Phase I trial of combretastatin A4 phosphate (CA4P) in combination with bevacizumab in patients with advanced cancer. Clinical Cancer Research, 18, 3428–3439.

    Article  CAS  PubMed  Google Scholar 

  22. Zweifel, M., Jayson, G. C., Reed, N. S., et al. (2011). Phase II trial of combretastatin A4 phosphate, carboplatin, and paclitaxel in patients with platinum-resistant ovarian cancer. Annals of Oncology, 22, 2036–2041.

    Article  CAS  PubMed  Google Scholar 

  23. Ching, L. M., Cao, Z., Kieda, C., Zwain, S., Jameson, M. B., & Baguley, B. C. (2002). Induction of endothelial cell apoptosis by the antivascular agent 5,6-Dimethylxanthenone-4-acetic acid. British Journal of Cancer, 86, 1937–1942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fredriksson, L., Li, H., Fieber, C., Li, X., & Eriksson, U. (2004). Tissue plasminogen activator is a potent activator of PDGF-CC. EMBO Journal, 23, 3793–3802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kazlauskas, A., & Cooper, J. A. (1989). Autophosphorylation of the PDGF receptor in the kinase insert region regulates interactions with cell proteins. Cell, 58, 1121–1133.

    Article  CAS  PubMed  Google Scholar 

  26. Antoniades, H. N., & Hunkapiller, M. W. (1983). Human platelet-derived growth factor (PDGF): amino-terminal amino acid sequence. Science, 220, 963–965.

    Article  CAS  PubMed  Google Scholar 

  27. Andrae, J., Gallini, R., & Betsholtz, C. (2008). Role of platelet-derived growth factors in physiology and medicine. Genes and Development, 22, 1276–1312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jain, R. K. (2003). Molecular regulation of vessel maturation. Nature Medicine, 9, 685–693.

    Article  CAS  PubMed  Google Scholar 

  29. Abramsson, A., Kurup, S., Busse, M., et al. (2007). Defective N-sulfation of heparan sulfate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development. Genes and Development, 21, 316–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Benjamin, L. E., Hemo, I., & Keshet, E. (1998). A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development, 125, 1591–1598.

    CAS  PubMed  Google Scholar 

  31. Oikawa, T., Onozawa, C., Sakaguchi, M., Morita, I., & Murota, S. (1994). Three isoforms of platelet-derived growth factors all have the capability to induce angiogenesis in vivo. Biological and Pharmaceutical Bulletin, 17, 1686–1688.

    Article  CAS  PubMed  Google Scholar 

  32. Lu, C., Thaker, P. H., Lin, Y. G., et al. (2008). Impact of vessel maturation on antiangiogenic therapy in ovarian cancer. American Journal of Obstetrics and Gynecology, 198(477), e471–e479. discussion 477 e479–410.

    Google Scholar 

  33. Valius, M., & Kazlauskas, A. (1993). Phospholipase C-gamma 1 and phosphatidylinositol 3 kinase are the downstream mediators of the PDGF receptor’s mitogenic signal. Cell, 73, 321–334.

    Article  CAS  PubMed  Google Scholar 

  34. Coughlin, S. R., Escobedo, J. A., & Williams, L. T. (1989). Role of phosphatidylinositol kinase in PDGF receptor signal transduction. Science, 243, 1191–1194.

    Article  CAS  PubMed  Google Scholar 

  35. Heldin, C. H., Ostman, A., & Ronnstrand, L. (1998). Signal transduction via platelet-derived growth factor receptors. Biochimica et Biophysica Acta, 1378, F79–F113.

    CAS  PubMed  Google Scholar 

  36. Yao, R., & Cooper, G. M. (1995). Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science, 267, 2003–2006.

    Article  CAS  PubMed  Google Scholar 

  37. Huang, J. S., Huang, S. S., & Deuel, T. F. (1984). Transforming protein of simian sarcoma virus stimulates autocrine growth of SSV-transformed cells through PDGF cell-surface receptors. Cell, 39, 79–87.

    Article  CAS  PubMed  Google Scholar 

  38. Greenhalgh, D. G., Sprugel, K. H., Murray, M. J., & Ross, R. (1990). PDGF and FGF stimulate wound healing in the genetically diabetic mouse. American Journal of Pathology, 136, 1235–1246.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hellberg, C., Ostman, A., & Heldin, C. H. (2010). PDGF and vessel maturation. Recent Results in Cancer Research, 180, 103–114.

    Article  CAS  PubMed  Google Scholar 

  40. Gaengel, K., Genove, G., Armulik, A., & Betsholtz, C. (2009). Endothelial-mural cell signaling in vascular development and angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 630–638.

    Article  CAS  PubMed  Google Scholar 

  41. Quaegebeur, A., Segura, I., & Carmeliet, P. (2010). Pericytes: blood-brain barrier safeguards against neurodegeneration? Neuron, 68, 321–323.

    Article  CAS  PubMed  Google Scholar 

  42. Ribatti, D., Vacca, A., Roccaro, A. M., Crivellato, E., & Presta, M. (2003). Erythropoietin as an angiogenic factor. European Journal of Clinical Investigation, 33, 891–896.

    Article  CAS  PubMed  Google Scholar 

  43. Crawford, Y., Kasman, I., Yu, L., et al. (2009). PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell, 15, 21–34.

    Article  CAS  PubMed  Google Scholar 

  44. Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E., & Hanahan, D. (2003). Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. Journal of Clinical Investigation, 111, 1287–1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Erber, R., Thurnher, A., Katsen, A. D., et al. (2004). Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB Journal, 18, 338–340.

    CAS  PubMed  Google Scholar 

  46. Jo, N., Mailhos, C., Ju, M., et al. (2006). Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization. American Journal of Pathology, 168, 2036–2053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hasumi, Y., Klosowska-Wardega, A., Furuhashi, M., Ostman, A., Heldin, C. H., & Hellberg, C. (2007). Identification of a subset of pericytes that respond to combination therapy targeting PDGF and VEGF signaling. International Journal of Cancer, 121, 2606–2614.

    Article  CAS  PubMed  Google Scholar 

  48. Gerhardt, H., & Semb, H. (2008). Pericytes: gatekeepers in tumour cell metastasis? Journal of Molecular Medicine (Berl), 86, 135–144.

    Article  Google Scholar 

  49. Alberts, D. S., Liu, P. Y., Wilczynski, S. P., et al. (2007). Phase II trial of imatinib mesylate in recurrent, biomarker positive, ovarian cancer (Southwest Oncology Group Protocol S0211). International Journal of Gynecological Cancer, 17, 784–788.

    Article  CAS  PubMed  Google Scholar 

  50. Coleman, R. L., Broaddus, R. R., Bodurka, D. C., et al. (2006). Phase II trial of imatinib mesylate in patients with recurrent platinum- and taxane-resistant epithelial ovarian and primary peritoneal cancers. Gynecologic Oncology, 101, 126–131.

    Article  CAS  PubMed  Google Scholar 

  51. Posadas, E. M., Kwitkowski, V., Kotz, H. L., et al. (2007). A prospective analysis of imatinib-induced c-KIT modulation in ovarian cancer: a phase II clinical study with proteomic profiling. Cancer, 110, 309–317.

    Article  CAS  PubMed  Google Scholar 

  52. Safra, T., Andreopoulou, E., Levinson, B., et al. (2010). Weekly paclitaxel with intermittent imatinib mesylate (Gleevec): tolerance and activity in recurrent epithelial ovarian cancer. Anticancer Research, 30, 3243–3247.

    CAS  PubMed  Google Scholar 

  53. Matulonis, U. A., Berlin, S., Ivy, P., et al. (2009). Cediranib, an oral inhibitor of vascular endothelial growth factor receptor kinases, is an active drug in recurrent epithelial ovarian, fallopian tube, and peritoneal cancer. Journal of Clinical Oncology, 27, 5601–5606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Raja, F. A., Griffin, C. L., Qian, W., et al. (2011). Initial toxicity assessment of ICON6: a randomised trial of cediranib plus chemotherapy in platinum-sensitive relapsed ovarian cancer. British Journal of Cancer, 105, 884–889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wilhelm, S., Carter, C., Lynch, M., et al. (2006). Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nature Reviews Drug Discovery, 5, 835–844.

    Article  CAS  PubMed  Google Scholar 

  56. Kane, R. C., Farrell, A. T., Saber, H., et al. (2006). Sorafenib for the treatment of advanced renal cell carcinoma. Clinical Cancer Research, 12, 7271–7278.

    Article  CAS  PubMed  Google Scholar 

  57. Kane, R. C., Farrell, A. T., Madabushi, R., et al. (2009). Sorafenib for the treatment of unresectable hepatocellular carcinoma. The Oncologist, 14, 95–100.

    Article  CAS  PubMed  Google Scholar 

  58. Matei, D., Sill, M. W., Lankes, H. A., et al. (2011). Activity of sorafenib in recurrent ovarian cancer and primary peritoneal carcinomatosis: a gynecologic oncology group trial. Journal of Clinical Oncology, 29, 69–75.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Welch, S. A., Hirte, H. W., Elit, L., et al. (2010). Sorafenib in combination with gemcitabine in recurrent epithelial ovarian cancer: a study of the Princess Margaret Hospital Phase II Consortium. International Journal of Gynecological Cancer, 20, 787–793.

    Article  PubMed  Google Scholar 

  60. Ramasubbaiah, R., Perkins, S. M., Schilder, J., et al. (2011). Sorafenib in combination with weekly topotecan in recurrent ovarian cancer, a phase I/II study of the Hoosier Oncology Group. Gynecologic Oncology, 123, 499–504.

    Article  CAS  PubMed  Google Scholar 

  61. Herzog, T. J., Scambia, G., Kim, B. G., et al. (2013). A randomized phase II trial of maintenance therapy with sorafenib in front-line ovarian carcinoma. Gynecologic Oncology, 130, 25–30.

    Article  CAS  PubMed  Google Scholar 

  62. Ledermann, J. A., Hackshaw, A., Kaye, S., et al. (2011). Randomized phase II placebo-controlled trial of maintenance therapy using the oral triple angiokinase inhibitor BIBF 1120 after chemotherapy for relapsed ovarian cancer. Journal of Clinical Oncology, 29, 3798–3804.

    Article  CAS  PubMed  Google Scholar 

  63. Izzedine, H., Buhaescu, I., Rixe, O., & Deray, G. (2007). Sunitinib malate. Cancer Chemotheraphy and Pharmacology, 60, 357–364.

    Article  CAS  Google Scholar 

  64. Biagi, J. J., Oza, A. M., Chalchal, H. I., et al. (2011). A phase II study of sunitinib in patients with recurrent epithelial ovarian and primary peritoneal carcinoma: an NCIC Clinical Trials Group Study. Annals of Oncology, 22, 335–340.

    Article  CAS  PubMed  Google Scholar 

  65. Friedlander, M., Hancock, K. C., Rischin, D., et al. (2010). A phase II, open-label study evaluating pazopanib in patients with recurrent ovarian cancer. Gynecologic Oncology, 119, 32–37.

    Article  CAS  PubMed  Google Scholar 

  66. Normanno, N., De Luca, A., Bianco, C., et al. (2006). Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 366, 2–16.

    Article  CAS  PubMed  Google Scholar 

  67. Yarden, Y., & Sliwkowski, M. X. (2001). Untangling the ErbB signalling network. Nature Reviews Molecular Cell Biology, 2, 127–137.

    Article  CAS  PubMed  Google Scholar 

  68. Cascone, T., Herynk, M. H., Xu, L., et al. (2011). Upregulated stromal EGFR and vascular remodeling in mouse xenograft models of angiogenesis inhibitor-resistant human lung adenocarcinoma. Journal of Clinical Investigation, 121, 1313–1328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Viloria-Petit, A., Crombet, T., Jothy, S., et al. (2001). Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Research, 61, 5090–5101.

    CAS  PubMed  Google Scholar 

  70. Vergote, I. B., Jimeno, A., Joly, F., et al. (2014). Randomized phase III study of erlotinib versus observation in patients with no evidence of disease progression after first-line platin-based chemotherapy for ovarian carcinoma: a European Organisation for Research and Treatment of Cancer-Gynaecological Cancer Group, and Gynecologic Cancer Intergroup Study. Journal of Clinical Oncology, 32, 320–326.

    Article  CAS  PubMed  Google Scholar 

  71. Pakkala, S., & Ramalingam, S. S. (2009). Combined inhibition of vascular endothelial growth factor and epidermal growth factor signaling in non-small-cell lung cancer therapy. Clinical Lung Cancer, 10(Suppl 1), S17–S23.

    Article  CAS  PubMed  Google Scholar 

  72. Kimelman, D., & Kirschner, M. (1987). Synergistic induction of mesoderm by FGF and TGF-beta and the identification of an mRNA coding for FGF in the early Xenopus embryo. Cell, 51, 869–877.

    Article  CAS  PubMed  Google Scholar 

  73. De Moerlooze, L., Spencer-Dene, B., Revest, J. M., Hajihosseini, M., Rosewell, I., & Dickson, C. (2000). An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development, 127, 483–492.

    PubMed  Google Scholar 

  74. Beenken, A., & Mohammadi, M. (2009). The FGF family: biology, pathophysiology and therapy. Nature Reviews Drug Discovery, 8, 235–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Johnson, D. E., & Williams, L. T. (1993). Structural and functional diversity in the FGF receptor multigene family. Advances in Cancer Research, 60, 1–41.

    Article  CAS  PubMed  Google Scholar 

  76. Bae, J. H., & Schlessinger, J. (2010). Asymmetric tyrosine kinase arrangements in activation or autophosphorylation of receptor tyrosine kinases. Molecules and Cells, 29, 443–448.

    Article  CAS  PubMed  Google Scholar 

  77. Eswarakumar, V. P., Lax, I., & Schlessinger, J. (2005). Cellular signaling by fibroblast growth factor receptors. Cytokine and Growth Factor Reviews, 16, 139–149.

    Article  CAS  PubMed  Google Scholar 

  78. Cunningham, D. L., Sweet, S. M., Cooper, H. J., & Heath, J. K. (2010). Differential phosphoproteomics of fibroblast growth factor signaling: identification of Src family kinase-mediated phosphorylation events. Journal of Proteome Research, 9, 2317–2328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Klint, P., & Claesson-Welsh, L. (1999). Signal transduction by fibroblast growth factor receptors. Frontiers in Bioscience, 4, D165–D177.

    Article  CAS  PubMed  Google Scholar 

  80. Presta, M., Dell’Era, P., Mitola, S., Moroni, E., Ronca, R., & Rusnati, M. (2005). Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine and Growth Factor Reviews, 16, 159–178.

    Article  CAS  PubMed  Google Scholar 

  81. Cross, M. J., & Claesson-Welsh, L. (2001). FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends in Pharmacological Sciences, 22, 201–207.

    Article  CAS  PubMed  Google Scholar 

  82. Presta, M., Tiberio, L., Rusnati, M., Dell’Era, P., & Ragnotti, G. (1991). Basic fibroblast growth factor requires a long-lasting activation of protein kinase C to induce cell proliferation in transformed fetal bovine aortic endothelial cells. Cell Regulation, 2, 719–726.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Shono, T., Kanetake, H., & Kanda, S. (2001). The role of mitogen-activated protein kinase activation within focal adhesions in chemotaxis toward FGF-2 by murine brain capillary endothelial cells. Experimental Cell Research, 264, 275–283.

    Article  CAS  PubMed  Google Scholar 

  84. Casanovas, O., Hicklin, D. J., Bergers, G., & Hanahan, D. (2005). Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell, 8, 299–309.

    Article  CAS  PubMed  Google Scholar 

  85. Compagni, A., Wilgenbus, P., Impagnatiello, M. A., Cotten, M., & Christofori, G. (2000). Fibroblast growth factors are required for efficient tumor angiogenesis. Cancer Research, 60, 7163–7169.

    CAS  PubMed  Google Scholar 

  86. Giavazzi, R., Sennino, B., Coltrini, D., et al. (2003). Distinct role of fibroblast growth factor-2 and vascular endothelial growth factor on tumor growth and angiogenesis. American Journal of Pathology, 162, 1913–1926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nissen, L. J., Cao, R., Hedlund, E. M., et al. (2007). Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. Journal of Clinical Investigation, 117, 2766–2777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lieu, C., Heymach, J., Overman, M., Tran, H., & Kopetz, S. (2011). Beyond VEGF: inhibition of the fibroblast growth factor pathway and antiangiogenesis. Clinical Cancer Research, 17, 6130–6139.

    Article  CAS  PubMed  Google Scholar 

  89. Fujii, T., & Kuwano, H. (2010). Regulation of the expression balance of angiopoietin-1 and angiopoietin-2 by Shh and FGF-2. In Vitro Cellular and Developmental Biology - Animal, 46, 487–491.

    Article  PubMed  Google Scholar 

  90. Pepper, M. S., Ferrara, N., Orci, L., & Montesano, R. (1992). Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochemical and Biophysical Research Communications, 189, 824–831.

    Article  CAS  PubMed  Google Scholar 

  91. Kopetz, S., Hoff, P. M., Morris, J. S., et al. (2010). Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: efficacy and circulating angiogenic biomarkers associated with therapeutic resistance. Journal of Clinical Oncology, 28, 453–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Batchelor, T. T., Sorensen, A. G., di Tomaso, E., et al. (2007). AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell, 11, 83–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Carmeliet, P., & Jain, R. K. (2011). Molecular mechanisms and clinical applications of angiogenesis. Nature, 473, 298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Augustin, H. G., Koh, G. Y., Thurston, G., & Alitalo, K. (2009). Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nature Reviews Molecular Cell Biology, 10, 165–177.

    Article  CAS  PubMed  Google Scholar 

  95. Sundberg, C., Kowanetz, M., Brown, L. F., Detmar, M., & Dvorak, H. F. (2002). Stable expression of angiopoietin-1 and other markers by cultured pericytes: phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo. Laboratory Investigation, 82, 387–401.

    Article  CAS  PubMed  Google Scholar 

  96. Winkler, F., Kozin, S. V., Tong, R. T., et al. (2004). Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell, 6, 553–563.

    CAS  PubMed  Google Scholar 

  97. Maisonpierre, P. C., Suri, C., Jones, P. F., et al. (1997). Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science, 277, 55–60.

    Article  CAS  PubMed  Google Scholar 

  98. Scharpfenecker, M., Fiedler, U., Reiss, Y., & Augustin, H. G. (2005). The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. Journal of Cell Science, 118, 771–780.

    Article  CAS  PubMed  Google Scholar 

  99. Bach, F., Uddin, F. J., & Burke, D. (2007). Angiopoietins in malignancy. European Journal of Surgical Oncology, 33, 7–15.

    Article  CAS  PubMed  Google Scholar 

  100. Carmeliet, P., & Jain, R. K. (2011). Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nature Reviews Drug Discovery, 10, 417–427.

    Article  CAS  PubMed  Google Scholar 

  101. Falcon, B. L., Hashizume, H., Koumoutsakos, P., et al. (2009). Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels. American Journal of Pathology, 175, 2159–2170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Koh, Y. J., Kim, H. Z., Hwang, S. I., et al. (2010). Double antiangiogenic protein, DAAP, targeting VEGF-A and angiopoietins in tumor angiogenesis, metastasis, and vascular leakage. Cancer Cell, 18, 171–184.

    Article  CAS  PubMed  Google Scholar 

  103. Herbst, R. S., Hong, D., Chap, L., et al. (2009). Safety, pharmacokinetics, and antitumor activity of AMG 386, a selective angiopoietin inhibitor, in adult patients with advanced solid tumors. Journal of Clinical Oncology, 27, 3557–3565.

    Article  CAS  PubMed  Google Scholar 

  104. Birchmeier, C., Birchmeier, W., Gherardi, E., & Vande Woude, G. F. (2003). Met, metastasis, motility and more. Nature Reviews Molecular Cell Biology, 4, 915–925.

    Article  CAS  PubMed  Google Scholar 

  105. Funakoshi, H., & Nakamura, T. (2003). Hepatocyte growth factor: from diagnosis to clinical applications. Clinica Chimica Acta, 327, 1–23.

    Article  CAS  Google Scholar 

  106. Bottaro, D. P., Rubin, J. S., Faletto, D. L., et al. (1991). Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science, 251, 802–804.

    Article  CAS  PubMed  Google Scholar 

  107. Bolanos-Garcia, V. M. (2005). MET meet adaptors: functional and structural implications in downstream signalling mediated by the Met receptor. Molecular and Cellular Biochemistry, 276, 149–157.

    Article  CAS  PubMed  Google Scholar 

  108. Yu, J., Miehlke, S., Ebert, M. P., et al. (2000). Frequency of TPR-MET rearrangement in patients with gastric carcinoma and in first-degree relatives. Cancer, 88, 1801–1806.

    Article  CAS  PubMed  Google Scholar 

  109. Dharmawardana, P. G., Giubellino, A., & Bottaro, D. P. (2004). Hereditary papillary renal carcinoma type I. Current Molecular Medicine, 4, 855–868.

    Article  CAS  PubMed  Google Scholar 

  110. Bussolino, F., Di Renzo, M. F., Ziche, M., et al. (1992). Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. Journal of Cell Biology, 119, 629–641.

    Article  CAS  PubMed  Google Scholar 

  111. Kitajima, Y., Ide, T., Ohtsuka, T., & Miyazaki, K. (2008). Induction of hepatocyte growth factor activator gene expression under hypoxia activates the hepatocyte growth factor/c-Met system via hypoxia inducible factor-1 in pancreatic cancer. Cancer Science, 99, 1341–1347.

    Article  CAS  PubMed  Google Scholar 

  112. Kubota, T., Taiyoh, H., Matsumura, A., et al. (2009). NK4, an HGF antagonist, prevents hematogenous pulmonary metastasis by inhibiting adhesion of CT26 cells to endothelial cells. Clinical and Experimental Metastasis, 26, 447–456.

    Article  CAS  PubMed  Google Scholar 

  113. Sulpice, E., Ding, S., Muscatelli-Groux, B., et al. (2009). Cross-talk between the VEGF-A and HGF signalling pathways in endothelial cells. Biology of the Cell, 101, 525–539.

    Article  CAS  PubMed  Google Scholar 

  114. Puri, N., Khramtsov, A., Ahmed, S., et al. (2007). A selective small molecule inhibitor of c-Met, PHA665752, inhibits tumorigenicity and angiogenesis in mouse lung cancer xenografts. Cancer Research, 67, 3529–3534.

    Article  CAS  PubMed  Google Scholar 

  115. Cantelmo, A. R., Cammarota, R., Noonan, D. M., et al. (2010). Cell delivery of Met docking site peptides inhibit angiogenesis and vascular tumor growth. Oncogene, 29, 5286–5298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gherardi, E., Birchmeier, W., Birchmeier, C., & Woude, G. V. (2012). Targeting MET in cancer: rationale and progress. Nature Reviews Cancer, 12, 89–103.

    Article  CAS  PubMed  Google Scholar 

  117. Hara, S., Nakashiro, K., Klosek, S. K., Ishikawa, T., Shintani, S., & Hamakawa, H. (2006). Hypoxia enhances c-Met/HGF receptor expression and signaling by activating HIF-1alpha in human salivary gland cancer cells. Oral Oncology, 42, 593–598.

    Article  CAS  PubMed  Google Scholar 

  118. Ide, T., Kitajima, Y., Miyoshi, A., et al. (2006). Tumor-stromal cell interaction under hypoxia increases the invasiveness of pancreatic cancer cells through the hepatocyte growth factor/c-Met pathway. International Journal of Cancer, 119, 2750–2759.

    Article  CAS  PubMed  Google Scholar 

  119. Pennacchietti, S., Michieli, P., Galluzzo, M., Mazzone, M., Giordano, S., & Comoglio, P. M. (2003). Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell, 3, 347–361.

    Article  PubMed  Google Scholar 

  120. Qian, F., Engst, S., Yamaguchi, K., et al. (2009). Inhibition of tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases. Cancer Research, 69, 8009–8016.

    Article  CAS  PubMed  Google Scholar 

  121. Nakagawa, T., Tohyama, O., Yamaguchi, A., et al. (2010). E7050: a dual c-Met and VEGFR-2 tyrosine kinase inhibitor promotes tumor regression and prolongs survival in mouse xenograft models. Cancer Science, 101, 210–215.

    Article  CAS  PubMed  Google Scholar 

  122. You, W. K., & McDonald, D. M. (2008). The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis. BMB Reports, 41, 833–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Shojaei, F., Lee, J. H., Simmons, B. H., et al. (2010). HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors. Cancer Research, 70, 10090–10100.

    Article  CAS  PubMed  Google Scholar 

  124. Tomioka, D., Maehara, N., Kuba, K., et al. (2001). Inhibition of growth, invasion, and metastasis of human pancreatic carcinoma cells by NK4 in an orthotopic mouse model. Cancer Research, 61, 7518–7524.

    CAS  PubMed  Google Scholar 

  125. Burgess, T., Coxon, A., Meyer, S., et al. (2006). Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Met-dependent human tumors. Cancer Research, 66, 1721–1729.

    Article  CAS  PubMed  Google Scholar 

  126. Martin, L. P., Sill, M., Shahin, M. S., et al. (2014). A phase II evaluation of AMG 102 (rilotumumab) in the treatment of persistent or recurrent epithelial ovarian, fallopian tube or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecologic Oncology, 132, 526–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Buckanovich, R. J., Berger, R., Sella, A., et al. (2011). Results from phase II randomized discontinuation trial. Journal of Clinical Oncology ASCO Annual Meeting. 29, abstract 5008.

  128. Pasquale, E. B. (2008). Eph-ephrin bidirectional signaling in physiology and disease. Cell, 133, 38–52.

    Article  CAS  PubMed  Google Scholar 

  129. Walker-Daniels, J., Hess, A. R., Hendrix, M. J., & Kinch, M. S. (2003). Differential regulation of EphA2 in normal and malignant cells. American Journal of Pathology, 162, 1037–1042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Pasquale, E. B. (1997). The Eph family of receptors. Current Opinion in Cell Biology, 9, 608–615.

    Article  CAS  PubMed  Google Scholar 

  131. Thaker, P. H., Deavers, M., Celestino, J., et al. (2004). EphA2 expression is associated with aggressive features in ovarian carcinoma. Clinical Cancer Research, 10, 5145–5150.

    Article  CAS  PubMed  Google Scholar 

  132. Cheng, N., Brantley, D. M., Liu, H., et al. (2002). Blockade of EphA receptor tyrosine kinase activation inhibits vascular endothelial cell growth factor-induced angiogenesis. Molecular Cancer Research, 1, 2–11.

    Article  CAS  PubMed  Google Scholar 

  133. Spannuth, W. A., Sood, A. K., & Coleman, R. L. (2008). Angiogenesis as a strategic target for ovarian cancer therapy. Nature Clinical Practice Oncology, 5, 194–204.

    Article  CAS  PubMed  Google Scholar 

  134. Lu, X. S., Sun, W., Ge, C. Y., Zhang, W. Z., & Fan, Y. Z. (2013). Contribution of the PI3K/MMPs/Ln-5gamma2 and EphA2/FAK/Paxillin signaling pathways to tumor growth and vasculogenic mimicry of gallbladder carcinomas. International Journal of Oncology, 42, 2103–2115.

    CAS  PubMed  Google Scholar 

  135. Hess, A. R., Seftor, E. A., Gardner, L. M., et al. (2001). Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation: role of epithelial cell kinase (Eck/EphA2). Cancer Research, 61, 3250–3255.

    CAS  PubMed  Google Scholar 

  136. Landen, C. N., Jr., Chavez-Reyes, A., Bucana, C., et al. (2005). Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Research, 65, 6910–6918.

    Article  CAS  PubMed  Google Scholar 

  137. Adam, M. G., Berger, C., Feldner, A., et al. (2013). Synaptojanin-2 binding protein stabilizes the Notch ligands DLL1 and DLL4 and inhibits sprouting angiogenesis. Circulation Research, 113, 1206–1218.

    Article  CAS  PubMed  Google Scholar 

  138. Hu, W., Lu, C., Dong, H. H., et al. (2011). Biological roles of the Delta family Notch ligand Dll4 in tumor and endothelial cells in ovarian cancer. Cancer Research, 71, 6030–6039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gale, N. W., Dominguez, M. G., Noguera, I., et al. (2004). Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proceedings of the National Academy of Sciences of the United States of America, 101, 15949–15954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lobov, I. B., Renard, R. A., Papadopoulos, N., et al. (2007). Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proceedings of the National Academy of Sciences of the United States of America, 104, 3219–3224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Thurston, G., Noguera-Troise, I., & Yancopoulos, G. D. (2007). The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nature Reviews Cancer, 7, 327–331.

    Article  CAS  PubMed  Google Scholar 

  142. Ridgway, J., Zhang, G., Wu, Y., et al. (2006). Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature, 444, 1083–1087.

    Article  CAS  PubMed  Google Scholar 

  143. Li, J. L., Sainson, R. C., Shi, W., et al. (2007). Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Research, 67, 11244–11253.

    Article  CAS  PubMed  Google Scholar 

  144. Tolcher, A. W., Messersmith, W. A., Mikulski, S. M., et al. (2012). Phase I study of RO4929097, a gamma secretase inhibitor of notch signaling, in patients with refractory metastatic or locally advanced solid tumors. Journal of Clinical Oncology, 30, 2348–2353.

    Article  CAS  PubMed  Google Scholar 

  145. Sahebjam, S., Bedard, P. L., Castonguay, V., et al. (2013). A phase i study of the combination of ro4929097 and cediranib in patients with advanced solid tumours (PJC-004/NCI 8503). British Journal of Cancer, 109, 943–949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Diaz-Padilla, I., Hirte, H., Oza, A. M., et al. (2013). A phase Ib combination study of RO4929097, a gamma-secretase inhibitor, and temsirolimus in patients with advanced solid tumors. Investigational New Drugs, 31, 1182–1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Strosberg, J. R., Yeatman, T., Weber, J., et al. (2012). A phase II study of RO4929097 in metastatic colorectal cancer. European Journal of Cancer, 48, 997–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Summy, J. M., & Gallick, G. E. (2003). Src family kinases in tumor progression and metastasis. Cancer Metastasis Reviews, 22, 337–358.

    Article  CAS  PubMed  Google Scholar 

  149. Ma, W. W., & Adjei, A. A. (2009). Novel agents on the horizon for cancer therapy. CA: A Cancer Journal for Clinicians, 59, 111–137.

    Google Scholar 

  150. Frame, M. C. (2002). Src in cancer: deregulation and consequences for cell behaviour. Biochimica et Biophysica Acta, 1602, 114–130.

    CAS  PubMed  Google Scholar 

  151. Trevino, J. G., Summy, J. M., Gray, M. J., et al. (2005). Expression and activity of SRC regulate interleukin-8 expression in pancreatic adenocarcinoma cells: implications for angiogenesis. Cancer Research, 65, 7214–7222.

    Article  CAS  PubMed  Google Scholar 

  152. Kanda, S., Miyata, Y., Kanetake, H., & Smithgall, T. E. (2007). Non-receptor protein-tyrosine kinases as molecular targets for antiangiogenic therapy (review). International Journal of Molecular Medicine, 20, 113–121.

    CAS  PubMed  Google Scholar 

  153. Labrecque, L., Royal, I., Surprenant, D. S., Patterson, C., Gingras, D., & Béliveau, R. (2003). Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Molecular Biology of the Cell, 14, 334–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Eliceiri, B. P., Puente, X. S., Hood, J. D., et al. (2002). Src-mediated coupling of focal adhesion kinase to integrin alpha(v)beta5 in vascular endothelial growth factor signaling. Journal of Cell Biology, 157, 149–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kim, Y. M., Lee, Y. M., Kim, H. S., et al. (2002). TNF-related activation-induced cytokine (TRANCE) induces angiogenesis through the activation of Src and phospholipase C (PLC) in human endothelial cells. Journal of Biological Chemistry, 277, 6799–6805.

    Article  CAS  PubMed  Google Scholar 

  156. Laird, A. D., Li, G., Moss, K. G., et al. (2003). Src family kinase activity is required for signal tranducer and activator of transcription 3 and focal adhesion kinase phosphorylation and vascular endothelial growth factor signaling in vivo and for anchorage-dependent and -independent growth of human tumor cells. Molecular Cancer Therapeutics, 2, 461–469.

    CAS  PubMed  Google Scholar 

  157. Bankhead, C. (2010). ESMO: failed trials dominate gyn cancer session. Accessed 14 Oct 2010.

  158. McNeish, I. A., Ledermann, J. A., Webber, L. C., et al. (2013). A randomized placebo-controlled trial of saracatinib (AZD0530) plus weekly paclitaxel in platinum-resistant ovarian, fallopian-tube, or primary peritoneal cancer (SaPPrOC). Journal of Clinical Oncology, 31.

  159. Hermann, C., Assmus, B., Urbich, C., Zeiher, A. M., & Dimmeler, S. (2000). Insulin-mediated stimulation of protein kinase Akt: a potent survival signaling cascade for endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 402–409.

    Article  CAS  PubMed  Google Scholar 

  160. Granville, C. A., Memmott, R. M., Gills, J. J., & Dennis, P. A. (2006). Handicapping the race to develop inhibitors of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway. Clinical Cancer Research, 12, 679–689.

    Article  CAS  PubMed  Google Scholar 

  161. Frisch, S. M., & Ruoslahti, E. (1997). Integrins and anoikis. Current Opinion in Cell Biology, 9, 701–706.

    Article  CAS  PubMed  Google Scholar 

  162. Gerber, H. P., McMurtrey, A., Kowalski, J., et al. (1998). Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. Journal of Biological Chemistry, 273, 30336–30343.

    Article  CAS  PubMed  Google Scholar 

  163. Brunet, A., Bonni, A., Zigmond, M. J., et al. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 96, 857–868.

    Article  CAS  PubMed  Google Scholar 

  164. Yang, D., Sun, Y., Hu, L., et al. (2013). Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. Cancer Cell, 23, 186–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Bianco, R., Garofalo, S., Rosa, R., et al. (2008). Inhibition of mTOR pathway by everolimus cooperates with EGFR inhibitors in human tumours sensitive and resistant to anti-EGFR drugs. British Journal of Cancer, 98, 923–930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Jin, H., & Varner, J. (2004). Integrins: roles in cancer development and as treatment targets. British Journal of Cancer, 90, 561–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ruegg, C., & Mariotti, A. (2003). Vascular integrins: pleiotropic adhesion and signaling molecules in vascular homeostasis and angiogenesis. Cellular and Molecular Life Sciences, 60, 1135–1157.

    CAS  PubMed  Google Scholar 

  168. da Silva, R. G., Tavora, B., Robinson, S. D., et al. (2010). Endothelial alpha3beta1-integrin represses pathological angiogenesis and sustains endothelial-VEGF. American Journal of Pathology, 177, 1534–1548.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Assoian, R. K. (1997). Anchorage-dependent cell cycle progression. Journal of Cell Biology, 136, 1–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Urbich, C., Dernbach, E., Reissner, A., Vasa, M., Zeiher, A. M., & Dimmeler, S. (2002). Shear stress-induced endothelial cell migration involves integrin signaling via the fibronectin receptor subunits alpha(5) and beta(1). Arteriosclerosis, Thrombosis, and Vascular Biology, 22, 69–75.

    Article  CAS  PubMed  Google Scholar 

  171. Abedi, H., & Zachary, I. (1997). Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. Journal of Biological Chemistry, 272, 15442–15451.

    Article  CAS  PubMed  Google Scholar 

  172. Brooks, P. C., Stromblad, S., Klemke, R., Visscher, D., Sarkar, F. H., & Cheresh, D. A. (1995). Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. Journal of Clinical Investigation, 96, 1815–1822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gutheil, J. C., Campbell, T. N., Pierce, P. R., et al. (2000). Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin alphavbeta3. Clinical Cancer Research, 6, 3056–3061.

    CAS  PubMed  Google Scholar 

  174. Stupp, R., & Ruegg, C. (2007). Integrin inhibitors reaching the clinic. Journal of Clinical Oncology, 25, 1637–1638.

    Article  CAS  PubMed  Google Scholar 

  175. Shibata, K., Kikkawa, F., Nawa, A., Suganuma, N., & Hamaguchi, M. (1997). Fibronectin secretion from human peritoneal tissue induces Mr 92,000 type IV collagenase expression and invasion in ovarian cancer cell lines. Cancer Research, 57, 5416–5420.

    CAS  PubMed  Google Scholar 

  176. Sawada, K., Mitra, A. K., Radjabi, A. R., et al. (2008). Loss of E-cadherin promotes ovarian cancer metastasis via alpha 5-integrin, which is a therapeutic target. Cancer Research, 68, 2329–2339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Park, C. C., Zhang, H., Pallavicini, M., et al. (2006). Beta1 integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo. Cancer Research, 66, 1526–1535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Bhaskar, V., Zhang, D., Fox, M., et al. (2007). A function blocking anti-mouse integrin alpha5beta1 antibody inhibits angiogenesis and impedes tumor growth in vivo. Journal of Translational Medicine, 5, 61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Bhaskar, V., Fox, M., Breinberg, D., et al. (2008). Volociximab, a chimeric integrin alpha5beta1 antibody, inhibits the growth of VX2 tumors in rabbits. Investigational New Drugs, 26, 7–12.

    Article  CAS  PubMed  Google Scholar 

  180. Ramakrishnan, V., Bhaskar, V., Law, D. A., et al. (2006). Preclinical evaluation of an anti-alpha5beta1 integrin antibody as a novel anti-angiogenic agent. Journal of Experimental Therapeutics and Oncology, 5, 273–286.

    CAS  PubMed  Google Scholar 

  181. Bell-McGuinn, K. M., Matthews, C. M., Ho, S. N., et al. (2011). A phase II, single-arm study of the anti-alpha5beta1 integrin antibody volociximab as monotherapy in patients with platinum-resistant advanced epithelial ovarian or primary peritoneal cancer. Gynecologic Oncology, 121, 273–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Naylor, M. S., Stamp, G. W., Foulkes, W. D., Eccles, D., & Balkwill, F. R. (1993). Tumor necrosis factor and its receptors in human ovarian cancer. Potential role in disease progression. Journal of Clinical Investigation, 91, 2194–2206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Wu, S., Boyer, C. M., Whitaker, R. S., et al. (1993). Tumor necrosis factor alpha as an autocrine and paracrine growth factor for ovarian cancer: monokine induction of tumor cell proliferation and tumor necrosis factor alpha expression. Cancer Research, 53, 1939–1944.

    CAS  PubMed  Google Scholar 

  184. Kulbe, H., Thompson, R., Wilson, J. L., et al. (2007). The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Research, 67, 585–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Jin, D. K., Shido, K., Kopp, H. G., et al. (2006). Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nature Medicine, 12, 557–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kaplan, R. N., Riba, R. D., Zacharoulis, S., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438, 820–827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kryczek, I., Lange, A., Mottram, P., et al. (2005). CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Research, 65, 465–472.

    CAS  PubMed  Google Scholar 

  188. Aguayo, A., Kantarjian, H., Manshouri, T., et al. (2000). Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood, 96, 2240–2245.

    CAS  PubMed  Google Scholar 

  189. Charles, K. A., Kulbe, H., Soper, R., et al. (2009). The tumor-promoting actions of TNF-alpha involve TNFR1 and IL-17 in ovarian cancer in mice and humans. Journal of Clinical Investigation, 119, 3011–3023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kulbe, H., Chakravarty, P., Leinster, D. A., et al. (2012). A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Research, 72, 66–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Madhusudan, S., Muthuramalingam, S. R., Braybrooke, J. P., et al. (2005). Study of etanercept, a tumor necrosis factor-alpha inhibitor, in recurrent ovarian cancer. Journal of Clinical Oncology, 23, 5950–5959.

    Article  CAS  PubMed  Google Scholar 

  192. Giuntoli, R. L., 2nd, Webb, T. J., Zoso, A., et al. (2009). Ovarian cancer-associated ascites demonstrates altered immune environment: implications for antitumor immunity. Anticancer Research, 29, 2875–2884.

    CAS  PubMed  Google Scholar 

  193. Lane, D., Matte, I., Rancourt, C., & Piche, A. (2011). Prognostic significance of IL-6 and IL-8 ascites levels in ovarian cancer patients. BMC Cancer, 11, 210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Dankbar, B., Padro, T., Leo, R., et al. (2000). Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood, 95, 2630–2636.

    CAS  PubMed  Google Scholar 

  195. Nilsson, M. B., Langley, R. R., & Fidler, I. J. (2005). Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine. Cancer Research, 65, 10794–10800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Rabinovich, A., Medina, L., Piura, B., Segal, S., & Huleihel, M. (2007). Regulation of ovarian carcinoma SKOV-3 cell proliferation and secretion of MMPs by autocrine IL-6. Anticancer Research, 27, 267–272.

    CAS  PubMed  Google Scholar 

  197. Scambia, G., Testa, U., Benedetti Panici, P., et al. (1995). Prognostic significance of interleukin 6 serum levels in patients with ovarian cancer. British Journal of Cancer, 71, 354–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Guo, Y., Nemeth, J., O’Brien, C., et al. (2010). Effects of siltuximab on the IL-6-induced signaling pathway in ovarian cancer. Clinical Cancer Research, 16, 5759–5769.

    Article  CAS  PubMed  Google Scholar 

  199. Coward, J., Kulbe, H., Chakravarty, P., et al. (2011). Interleukin-6 as a therapeutic target in human ovarian cancer. Clinical Cancer Research, 17, 6083–6096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811.

    Article  CAS  PubMed  Google Scholar 

  201. Hammond, S. M., Bernstein, E., Beach, D., & Hannon, G. J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 404, 293–296.

    Article  CAS  PubMed  Google Scholar 

  202. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., & Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411, 494–498.

    Article  CAS  PubMed  Google Scholar 

  203. Fattal, E., & Bochot, A. (2006). Ocular delivery of nucleic acids: antisense oligonucleotides, aptamers and siRNA. Advanced Drug Delivery Reviews, 58, 1203–1223.

    Article  CAS  PubMed  Google Scholar 

  204. Bitko, V., Musiyenko, A., Shulyayeva, O., & Barik, S. (2005). Inhibition of respiratory viruses by nasally administered siRNA. Nature Medicine, 11, 50–55.

    Article  CAS  PubMed  Google Scholar 

  205. Ozpolat, B., Sood, A. K., & Lopez-Berestein, G. (2010). Nanomedicine based approaches for the delivery of siRNA in cancer. Journal of Internal Medicine, 267, 44–53.

    Article  CAS  PubMed  Google Scholar 

  206. Zhou, J., Shum, K. T., Burnett, J. C., & Rossi, J. J. (2013). Nanoparticle-based delivery of RNAi therapeutics: progress and challenges. Pharmaceuticals (Basel), 6, 85–107.

    Article  CAS  Google Scholar 

  207. Tan, W. B., Jiang, S., & Zhang, Y. (2007). Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials, 28, 1565–1571.

    Article  CAS  PubMed  Google Scholar 

  208. Lee, J. H., Lee, K., Moon, S. H., Lee, Y., Park, T. G., & Cheon, J. (2009). All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angewandte Chemie International Edition in English, 48, 4174–4179.

    Article  CAS  Google Scholar 

  209. Yu, D., Peng, P., Dharap, S. S., et al. (2005). Antitumor activity of poly(ethylene glycol)-camptothecin conjugate: the inhibition of tumor growth in vivo. Journal of Controlled Release, 110, 90–102.

    Article  CAS  PubMed  Google Scholar 

  210. Maeda, H. (2001). The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Advances in Enzyme Regulation, 41, 189–207.

    Article  CAS  PubMed  Google Scholar 

  211. Nikitenko, N. A., & Prassolov, V. S. (2013). Non-viral delivery and therapeutic application of small interfering RNAs. Acta Naturae, 5, 35–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Davis, M. E., Zuckerman, J. E., Choi, C. H., et al. (2010). Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature, 464, 1067–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Heidel, J. D., Yu, Z., Liu, J. Y., et al. (2007). Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proceedings of the National Academy of Sciences of the United States of America, 104, 5715–5721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Matei, D., Emerson, R. E., Schilder, J., et al. (2008). Imatinib mesylate in combination with docetaxel for the treatment of patients with advanced, platinum-resistant ovarian cancer and primary peritoneal carcinomatosis: a Hoosier Oncology Group trial. Cancer, 113, 723–732.

    Article  CAS  PubMed  Google Scholar 

  215. Juretzka, M., Hensley, M. L., Tew, W., et al. (2008). A phase 2 trial of oral imatinib in patients with epithelial ovarian, fallopian tube, or peritoneal carcinoma in second or greater remission. European Journal of Gynaecological Oncology, 29, 568–572.

    CAS  PubMed  Google Scholar 

  216. Liu, J. F., Tolaney, S. M., Birrer, M., et al. (2013). A Phase 1 trial of the poly(ADP-ribose) polymerase inhibitor olaparib (AZD2281) in combination with the anti-angiogenic cediranib (AZD2171) in recurrent epithelial ovarian or triple-negative breast cancer. European Journal of Cancer, 49, 2972–2978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Hjalmarson, A. (1990). Heart rate and beta-adrenergic mechanisms in acute myocardial infarction. Basic Research in Cardiology, 85(Suppl 1), 325–333.

    PubMed  Google Scholar 

  218. Bodnar, L., Gornas, M., & Szczylik, C. (2011). Sorafenib as a third line therapy in patients with epithelial ovarian cancer or primary peritoneal cancer: a phase II study. Gynecologic Oncology, 123, 33–36.

    Article  CAS  PubMed  Google Scholar 

  219. Campos, S. M., Penson, R. T., Matulonis, U., et al. (2013). A phase II trial of sunitinib malate in recurrent and refractory ovarian, fallopian tube and peritoneal carcinoma. Gynecologic Oncology, 128, 215–220.

    Article  CAS  PubMed  Google Scholar 

  220. Baumann, K. H., du Bois, A., Meier, W., et al. (2012). A phase II trial (AGO 2.11) in platinum-resistant ovarian cancer: a randomized multicenter trial with sunitinib (SU11248) to evaluate dosage, schedule, tolerability, toxicity and effectiveness of a multitargeted receptor tyrosine kinase inhibitor monotherapy. Annals of Oncology, 23, 2265–2271.

    Article  CAS  PubMed  Google Scholar 

  221. Karlan, B. Y., Oza, A. M., Richardson, G. E., et al. (2012). Randomized, double-blind, placebo-controlled phase II study of AMG 386 combined with weekly paclitaxel in patients with recurrent ovarian cancer. Journal of Clinical Oncology, 30, 362–371.

    Article  CAS  PubMed  Google Scholar 

  222. Secord, A. A., Teoh, D. K., Barry, W. T., et al. (2012). A phase I trial of dasatinib, an SRC-family kinase inhibitor, in combination with paclitaxel and carboplatin in patients with advanced or recurrent ovarian cancer. Clinical Cancer Research, 18, 5489–5498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Schilder, R. J., Brady, W. E., Lankes, H. A., et al. (2012). Phase II evaluation of dasatinib in the treatment of recurrent or persistent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecologic Oncology, 127, 70–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Behbakht, K., Sill, M. W., Darcy, K. M., et al. (2011). Phase II trial of the mTOR inhibitor, temsirolimus and evaluation of circulating tumor cells and tumor biomarkers in persistent and recurrent epithelial ovarian and primary peritoneal malignancies: a Gynecologic Oncology Group study. Gynecologic Oncology, 123, 19–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Temkin, S. M., Yamada, S. D., & Fleming, G. F. (2010). A phase I study of weekly temsirolimus and topotecan in the treatment of advanced and/or recurrent gynecologic malignancies. Gynecologic Oncology, 117, 473–476.

    Article  CAS  PubMed  Google Scholar 

  226. Kollmannsberger, C., Hirte, H., Siu, L. L., et al. (2012). Temsirolimus in combination with carboplatin and paclitaxel in patients with advanced solid tumors: a NCIC-CTG, phase I, open-label dose-escalation study (IND 179). Annals of Oncology, 23, 238–244.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Portions of this work were supported by grants from the US National Institutes of Health (P50CA083639, P50CA098258, CA109298, U54 CA151668, CA177909, UH2TR000943, T32CA101642, and CA16672), the Department of Defense (OC120547 and OC093416), a Program Project Development Grant, and an Ann Schreiber-mentored Investigators Award from the Ovarian Cancer Research Fund, CPRIT RP110595, the Bettyann Asche Murray Distinguished Professorship, the Chapman Foundation, the Meyer and Ida Gordon Foundation, the Gilder Foundation, the RGK Foundation, the Judi A. Rees Ovarian Cancer Research Fund, and the Blanton-Davis Ovarian Cancer Research Program. We thank Zachary S. Bohannan, Dawn Chalaire, and Arthur Gelmis for editorial review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Sood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, HJ., Armaiz Pena, G.N., Pradeep, S. et al. Anti-vascular therapies in ovarian cancer: moving beyond anti-VEGF approaches. Cancer Metastasis Rev 34, 19–40 (2015). https://doi.org/10.1007/s10555-014-9538-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-014-9538-9

Keywords

Navigation